【題目】如圖,△ABC中,∠B=65°,∠BAD=40°,∠AED=100°,∠CDE=45°,求∠CAD的度數(shù).
【答案】20°
【解析】
在△ABD中,由內(nèi)角和定理求得∠BDA=180°-(∠B+∠BAD)=75°,由平角定義知∠ADE=60°,再在△ADE中,由∠CAD=180°-∠ADE-∠AED可得答案.
在△ABD中,因?yàn)?/span>∠B=65°,∠BAD=40°,
所以∠BDA=180°-(∠B+∠BAD)=180°-(65°+40°)=75°,
因?yàn)?/span>∠CDE=45°,
所以∠ADE=180°-(∠BDA+∠CDE)=180°-(75°+45°)=60°,
在△ADE中,
因?yàn)?/span>∠AED=100°,
所以∠CAD=180°-∠ADE-∠AED=180°-60°-100°=20°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+2的圖象與反比例函數(shù)y=﹣ 的圖象交于A、B兩點(diǎn),與x軸交于D點(diǎn),且C、D兩點(diǎn)關(guān)于y軸對(duì)稱.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AQ與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)Q,∠QAO=45°,直線AQ在y軸上的截距為2,直線BE:y=-2x+8與直線AQ交于點(diǎn)P.
(1)求直線AQ的解析式;
(2)在y軸正半軸上取一點(diǎn)F,當(dāng)四邊形BPFO是梯形時(shí),求點(diǎn)F的坐標(biāo).
(3)若點(diǎn)C在y軸負(fù)半軸上,點(diǎn)M在直線PA上,點(diǎn)N在直線PB上,是否存在以Q、C、M、N為頂點(diǎn)的四邊形是菱形,若存在請(qǐng)求出點(diǎn)C的坐標(biāo);若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上一點(diǎn),OQ⊥BC于點(diǎn)Q,過點(diǎn)B作半圓O的切線,交OQ的延長線于點(diǎn)P,PA交半圓O于R,則下列等式中正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在計(jì)算3(4+1)(42+1)時(shí),把3寫成(4﹣1)后,發(fā)現(xiàn)可以連續(xù)運(yùn)用平方差公式計(jì)算:3(4+1)(42+1)=(4﹣1)(4+1)(42+1)=(42﹣1)(42+1)=(42)2﹣12=256﹣1=255.請(qǐng)借鑒該同學(xué)的方法計(jì)算(2+1)(22+1)(24+1)(28+1)…(22048+1)=______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2AB,E是AD邊上一點(diǎn),DE= AD(n為大于2的整數(shù)),連接BE,作BE的垂直平分線分別交AD,BC于點(diǎn)F,G,F(xiàn)G與BE的交點(diǎn)為O,連接BF和EG.
(1)試判斷四邊形BFEG的形狀,并說明理由;
(2)當(dāng)AB=a(a為常數(shù)),n=3時(shí),求FG的長;
(3)記四邊形BFEG的面積為S1 , 矩形ABCD的面積為S2 , 當(dāng) = 時(shí),求n的值.(直接寫出結(jié)果,不必寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】宜賓是國家級(jí)歷史文化名城,大觀樓是標(biāo)志性建筑之一(如圖①).喜愛數(shù)學(xué)實(shí)踐活動(dòng)的小偉查資料得知:大觀樓始建于明代(一說是唐代韋皋所建),后毀于兵火,乾隆乙酉年(1765年)重建,它是我國目前現(xiàn)存最高大、最古老的樓閣之一.小偉決定用自己所學(xué)習(xí)的知識(shí)測量大觀樓的高度.如圖②,他利用測角儀站在B處測得大觀樓最高點(diǎn)P的仰角為45°,又前進(jìn)了12米到達(dá)A處,在A處測得P的仰角為60°.請(qǐng)你幫助小偉算算大觀樓的高度.(測角儀高度忽略不計(jì), ≈1.7,結(jié)果保留整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com