【題目】ABC中,CACB,∠ACBα.點P 是平面內(nèi)不與點A,C 重合的任意一點,連接AP,將線段AP 繞點P 逆時針旋轉(zhuǎn)α得到線段DP,連接ADBD,CP

1)猜想觀察:如圖1,當α60°時,的值是________,直線BD與直線CP相交所成的較小角的度數(shù)是________

2)類比探究:如圖2,當α90°時,請寫出的值及直線BD與直線CP相交所成的較小角的度數(shù),并就圖2的情形說明理由.

3)解決問題:如圖3,當α90°時,若點 E,F 分別是 CA,CB 的中點,點 P FE的延長線上,PD,C三點在同一直線上,ACBD相交于點M,DM2,求AP的長.

【答案】1160°;(2,45°,見解析;(31

【解析】

1)如圖1中,延長CPBD的延長線于E,設(shè)ABEC于點O.證明△CAP≌△BADSAS),即可解決問題;

2)如圖2中,設(shè)BDAC于點OBDPC于點E.證明△DAB∽△PAC,即可解決問題.

3)首先證明ADDC,再設(shè)APxPDx,在Rt△PAD中,由勾股定理得,AD,BD (2)x.,證明△ADM∽△BDA,得AD2DM·BD,列方程求解即可.

1)如圖1中,延長CPBD的延長線于E,設(shè)ABEC于點O

∵∠PAD=∠CAB=60°

∴∠CAP=∠BAD,

∵CA=BAPA=DA,

∴△CAP≌△BADSAS),

∴PC=BD,∠ACP=∠ABD,

∵∠AOC=∠BOE,

∴∠BEO=∠CAO=60°,

,線BD與直線CP相交所成的較小角的度數(shù)是60°

故答案為1,60°

(2)如圖2中,設(shè)BDAC于點O,BDPC于點E

∵∠PAD=∠CAB=45°

∴∠PAC=∠DAB,

∵∠APD=∠ACB=90°,AP=PDCA=CB

,

,

∴△DAB∽△PAC

∴∠PCA=∠DBA,

∵∠BOC∠BEC∠PCA∠ABD∠BAC,∠PCA∠DBA,

∴∠BEC∠BAC45°,即直線BD與直線CP相交所成的較小角的度數(shù)為45°

(3)∵ E,F 分別是 CA,CB 的中點,

∴EF∥AB,AEEC,

∴∠PEA∠BAC45°

∵P,DC三點在同一直線上,∠APD90°

∴∠APC90°,PEAEEC,

∴∠EPC∠ECP

∵∠EPC∠ECP∠PEA45°,∠DAC∠ECP∠PDA45°,

∴∠EPC∠ECP∠DAC,

∴ADDC

設(shè)APx,則PDx,

Rt△PAD中,由勾股定理得,AD,

∴PCPDCD(1)x.由(2),

∴BDPC(2)x

∵∠ECP∠DAC,∠PCA∠DBA

∴∠DAC∠DBA,

∵∠ADM∠BDA,

∴△ADM∽△BDA,

,即AD2DM·BD,

∴(x)2(2)(2)x.解得x11,x20(不合題意,舍去),

∴AP1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).

請根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補充完整;

(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD邊長為6,EBC的中點,連接AE,以AE為邊在正方形內(nèi)部作∠EAF=45°,邊于點,連接,則下列說法中:①;②;③tanAFE=3;④.正確的有( )

A.①②③B.②④C.①④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中, ABDC,∠BCD90°,且AB1BC2,

tanADC2

(1)求證:DCBC;

(2)E是梯形內(nèi)的一點,F是梯形外的一點,且∠EDC=∠FBC,DEBF,試判斷△ECF的形狀,并證明你的結(jié)論;

(3)在⑵的條件下,當BECE12,∠BEC135°時,求sinBFE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,過點A作⊙O的切線交BC的延長線于點D

(1)求證:△DAC∽△DBA

(2)過點C作⊙O的切線CEAD于點E,求證:CEAD

(3)若點F為直徑AB下方半圓的中點,連接CFAB于點G,且AD6AB3,求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種商品的進價為40/件,以獲利不低于25%的價格銷售時,商品的銷售單價y(元/件)與銷售數(shù)量x(件)(x是正整數(shù))之間的關(guān)系如下表:

x(件)


5

10

15

20


y(元/件)


75

70

65

60


1)由題意知商品的最低銷售單價是 元,當銷售單價不低于最低銷售單價時,yx的一次函數(shù).求出yx的函數(shù)關(guān)系式及x的取值范圍;

2)在(1)的條件下,當銷售單價為多少元時,所獲銷售利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了了解九年級學生“長跑”成績的情況,隨機抽取部分九年級學生,測試其長跑成績(男子1000米,女子800米),按長跑成績依次分為A、B、CD四個等級進行統(tǒng)計.制作如下兩個不完整的統(tǒng)計圖.

根據(jù)所給信息,解答下列問題:

(1)在扇形統(tǒng)計圖中,對應的扇形圓心角是______度;

(2)補全條形統(tǒng)計圖;

(3)所抽取學生的“長跑”測試成績的中位數(shù)會落在______等級;

(4)該校九年級有477名學生,請估計“長跑”測試成績達到級的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷售,每年產(chǎn)銷件.已知產(chǎn)銷兩種產(chǎn)品的有關(guān)信息如下表:

產(chǎn)品

每件售價(萬元)

每件成本(萬元)

每年其他費用(萬元)

每年最大產(chǎn)銷量(件)

6

20

200

30

20

80

其中為常數(shù),且

1)若產(chǎn)銷甲、乙兩種產(chǎn)品的年利潤分別為萬元、萬元,直接寫出、的函數(shù)關(guān)系式(寫出自變量的取值范圍);

2)分別求出產(chǎn)銷兩種產(chǎn)品的最大年利潤;

3)為獲得最大年利潤,該公司應該選擇產(chǎn)銷哪種產(chǎn)品?請說明理由.

查看答案和解析>>

同步練習冊答案