【題目】按要求解答下列各題:

(1)解不等式:3x52(23x);

(2)解不等式:2x3≤ (x2);

(3)解不等式: x1,并將解集在數(shù)軸上表示出來.

【答案】(1)x>-3 (2)x (3)x2,畫數(shù)軸略

【解析】【試題分析】1)去括號得: 移項得: 合并同類項得: 系數(shù)化為1得:x>-3;

(2) 去括號得: 移項得: 合并同類項得: 系數(shù)化為1得: x;

(3)去分母得: 移項得: ,合并得: 系數(shù)化為1得:x2,數(shù)軸見解析.

【試題解析】

去括號得:

移項得:

合并同類項得:

系數(shù)化為1得:x>-3 ;

(2) 去括號得:

移項得:

合并同類項得:

系數(shù)化為1得: x;

(3)去分母得

移項得 ,

合并得

系數(shù)化為1x2,將解析在數(shù)軸上表示為:

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?

(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,E是BD上的一點,∠BAE=∠BCE,∠AED=∠CED,點G是BC、AE延長線的交點,AG與CD相交于點F.
(1)求證:四邊形ABCD是正方形;
(2)當AE=2EF時,判斷FG與EF有何數(shù)量關系?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,∠C=90°,tanA= ,D是AC上一點,∠CBD=∠A,則sin∠ABD=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二廣高速在益陽境內(nèi)的建設正在緊張地進行,現(xiàn)有大量的沙石需要運輸.益安車隊有載重量為8噸、10噸的卡車共12輛,全部車輛運輸一次能運輸110噸沙石.

1)求益安車隊載重量為8噸、10噸的卡車各有多少輛?

2)隨著工程的進展,益安車隊需要一次運輸沙石165噸以上,為了完成任務,準備新增購這兩種卡車共6輛,車隊有多少種購買方案,請你一一寫出.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,AD與BC交于點E,EF是∠BED的平分線,若∠1=30°,∠2=40°,則∠BEF=度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課外閱讀是提高學生素養(yǎng)的重要途徑,亞光初中為了了解學校學生的閱讀情況,組織調(diào)查組對全校三個年級共1500名學生進行了抽樣調(diào)查,抽取的樣本容量為300.已知該校有初一學生600名,初二學生500名,初三學生400名.
(1)為使調(diào)查的結果更加準確地反映全校的總體情況,應分別在初一年級隨機抽取人;在初二年級隨機抽取人;在初三年級隨機抽取人.(請直接填空)
(2)調(diào)查組對本校學生課外閱讀量的統(tǒng)計結果分別用扇形統(tǒng)計圖和頻數(shù)分布直方圖表示如下請根據(jù)上統(tǒng)計圖,計算樣本中各類閱讀量的人數(shù),并補全頻數(shù)分布直方圖.
(3)根據(jù)(2)的調(diào)查結果,從該校中隨機抽取一名學生,他最大可能的閱讀量是多少本?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果把一個自然數(shù)各數(shù)位上的數(shù)字從最高位到個位依次排出的一串數(shù)字,與從個位到最高位依次排出的一串數(shù)字完全相同,那么我們把這樣的自然數(shù)稱為和諧數(shù).例如:自然數(shù)12321,從最高位到個位排出的一串數(shù)字是:1,2,3,21,從個位到最高排出的一串數(shù)字仍是:12,3,2,1,因此12321是一個和諧數(shù).再如:22,545,388334543,,都是和諧數(shù)

1)請你直接寫出3個四位和諧數(shù);請你猜想任意一個四位和諧數(shù)能否被11整除,并說明理由;

2)已知一個能被11整除的三位和諧數(shù),設其個位上的數(shù)字為x,x為自然數(shù)),十位上的數(shù)字為y,求yx的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C、D、E、F是⊙O的六等分點.
(1)連接AB、AD、AF,求證:AB+AF=AD;
(2)若P是圓周上異于已知六等分點的動點,連接PB、PD、PF,寫出這三條線段長度的數(shù)量關系(不必說明理由).

查看答案和解析>>

同步練習冊答案