【題目】如圖,直線與坐標(biāo)軸相交于AB兩點(diǎn),點(diǎn)Px軸正半軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAB是等腰三角形時(shí),點(diǎn)P的坐標(biāo)為_____

【答案】,0)或(90).

【解析】

利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A,B的坐標(biāo),利用勾股定理可求出AB的長(zhǎng),分PAPBABAP兩種情況考慮:當(dāng)PAPB時(shí),設(shè)點(diǎn)P的坐標(biāo)為(m0),利用PAPB可得出關(guān)于m的方程,解之即可得出點(diǎn)P的坐標(biāo);當(dāng)ABAP時(shí),由AB5可得出AP5,結(jié)合OA4可得出OP的長(zhǎng),進(jìn)而可得出點(diǎn)P的坐標(biāo).綜上,此題得解.

解:當(dāng)x0時(shí),y=﹣x+33

OB3,點(diǎn)B的坐標(biāo)為(03);

當(dāng)y0時(shí),﹣x+30,解得:x4,

OA4,點(diǎn)A的坐標(biāo)為(40).

AB5

分兩種情況考慮,如圖所示.

當(dāng)PAPB時(shí),設(shè)點(diǎn)P的坐標(biāo)為(m0),則PA4m,PB,

4m,

解得:m

∴點(diǎn)P的坐標(biāo)為(0);

當(dāng)ABAP時(shí),AP5,

OPOA+AP9,

∴點(diǎn)P的坐標(biāo)為(9,0).

故答案為:(,0)或(90).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠B與∠C的平分線交于點(diǎn)O,過OEFBCABACE、F,若ABC的周長(zhǎng)比AEF的周長(zhǎng)大12cm,OAB的距離為4cmOBC的面積_____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.

甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.

乙公司方案:綠化面積不超過1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4.

(1)求如圖所示的yx的函數(shù)解析式;(不要求寫取值范圍)

(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計(jì)算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖像如圖所示,下列結(jié)論正確是( )

A. B. C. D. 有兩個(gè)不相等的實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B是直線y=x+4與坐標(biāo)軸的交點(diǎn),直線y=-2x+b過點(diǎn)B,與x軸交于點(diǎn)C

1)求AB,C三點(diǎn)的坐標(biāo);

2)點(diǎn)D是折線ABC上一動(dòng)點(diǎn).

①當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),在x軸上找一點(diǎn)E,使ED+EB的和最小,用直尺和圓規(guī)畫出點(diǎn)E的位置(保留作圖痕跡,不要求寫作法和證明),并求E點(diǎn)的坐標(biāo).

②是否存在點(diǎn)D,使△ACD為直角三角形,若存在,直接寫出D點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)Py=的圖象上,PC⊥x軸,交y=的圖象于點(diǎn)A,PD⊥y軸,交y=的圖象于點(diǎn)B.當(dāng)點(diǎn)Py=的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①△ODB△OCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積不會(huì)發(fā)生變化;④當(dāng)點(diǎn)APC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).其中一定正確的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;

(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)Pab)和直線y=ax+b,我們稱點(diǎn)P((a,b)是直線y=ax+b的關(guān)聯(lián)點(diǎn),直線y=ax+b是點(diǎn)Pa,b)的關(guān)聯(lián)直線.特別地,當(dāng)a=0時(shí),直線y=bb為常數(shù))的關(guān)聯(lián)點(diǎn)為P0,b).

如圖,已知點(diǎn)A-2,-2),B4,-2),C1,4).

1)點(diǎn)A的關(guān)聯(lián)直線的解析式為______;

直線AB的關(guān)聯(lián)點(diǎn)的坐標(biāo)為______;

2)設(shè)直線AC的關(guān)聯(lián)點(diǎn)為點(diǎn)D,直線BC的關(guān)聯(lián)點(diǎn)為點(diǎn)E,點(diǎn)Py軸上,且SDEP=2,求點(diǎn)P的坐標(biāo).

3)點(diǎn)Mmn)是折線段AC→CB(包含端點(diǎn)A,B)上的一個(gè)動(dòng)點(diǎn).直線l是點(diǎn)M的關(guān)聯(lián)直線,當(dāng)直線lABC恰有兩個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC > BC,CDRt△ABC的高,EAC的中點(diǎn),ED的延長(zhǎng)線與CB的延長(zhǎng)線相交于點(diǎn)F.

(1)求證:DFBFCF的比例中項(xiàng);

(2)在AB上取一點(diǎn)G,如果AE·AC=AG·AD,求證:EG·CF=ED·DF.

查看答案和解析>>

同步練習(xí)冊(cè)答案