【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,給出以下結(jié)論,①ab<0,②b2﹣4ac>0,③4b+c<0,④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2,⑤當(dāng)﹣3≤x≤1時,y≥0,其中正確的結(jié)論是( )
A. 2個 B. 3個 C. 4個 D. 5個
【答案】B
【解析】
利用拋物線開口方向得到a<0,利用拋物線的對稱軸方程得到b=2a<0,則可對①進(jìn)行判斷;利用拋物線與x軸的交點(diǎn)個數(shù)對②進(jìn)行判斷;利用拋物線的對稱性得到拋物線與x軸的另一個交點(diǎn)坐標(biāo)為(1,0),則a+b+c=0,把b=2a代入得到c=-3a,則可對③進(jìn)行判斷;利用二次函數(shù)的性質(zhì)對④進(jìn)行判斷;利用拋物線在x軸上方對應(yīng)的自變量的范圍可對⑤進(jìn)行判斷.
:∵拋物線開口向下,
∴a<0,
∵拋物線的對稱軸為直線x=-=-1,
∴b=2a<0,
∴ab>0,所以①錯誤;
∵拋物線與x軸有2個交點(diǎn),
∴△=b2-4ac>0,所以②正確;
∵拋物線與x軸的一個交點(diǎn)坐標(biāo)為(-3,0),拋物線的對稱軸為直線x=-1,
∴拋物線與x軸的另一個交點(diǎn)坐標(biāo)為(1,0),
∴x=1時,y=0,即a+b+c=0,
∴3a+c=0,
∴c=-3a,
∴4b+c=8a-3a=5a<0,所以③正確;
∵點(diǎn)B(-,y1)到直線x=-1的距離大于點(diǎn)C(-,y2)到直線x=-1的距離,
∴y1<y2,所以④錯誤;
當(dāng)-3≤x≤1時,y≥0,所以⑤正確.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊材料的形狀是銳角三角形ABC,邊BC長120mm,高AD為80mm,把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點(diǎn)分別在AB,AC上.
(1)圖中與△ABC相似的三角形是哪一個,說明理由;
(2)這個正方形零件的邊長為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=﹣kx+k與反比例函數(shù)y=﹣(k≠0)在同一坐標(biāo)系中的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,將△AOB繞點(diǎn)B逆時針旋轉(zhuǎn)90°后,得到△A′O′B,且反比例函數(shù)y=的圖象恰好經(jīng)過斜邊A′B的中點(diǎn)C,若SABO=4,tan∠BAO=2,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD中,如圖,對角線AC和BD相交于點(diǎn)O,AC=10,BD=8.
(1)若AC⊥BD,試求四邊形ABCD的面積;
(2)若AC與BD的夾角∠AOD=60°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮玩一個游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.
(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)你認(rèn)為這個游戲規(guī)則對雙方公平嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BC與x軸平行,AB=1,點(diǎn)C的坐標(biāo)為(6,2),E是AD的中點(diǎn);反比例函數(shù)y1=(x>0)圖象經(jīng)過點(diǎn)C和點(diǎn)E,過點(diǎn)B的直線y2=ax+b與反比例函數(shù)圖象交于點(diǎn)F,點(diǎn)F的縱坐標(biāo)為4.
(1)求反比例函數(shù)的解析式和點(diǎn)E的坐標(biāo);
(2)求直線BF的解析式;
(3)直接寫出y1>y2時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+2x+3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,連接BC
(1)點(diǎn)G是直線BC上方拋物線上一動點(diǎn)(不與B、C重合),過點(diǎn)G作y軸的平行線交直線BC于點(diǎn)E,作GF⊥BC于點(diǎn)F,點(diǎn)M、N是線段BC上兩個動點(diǎn),且MN=EF,連接DM、GN.當(dāng)△GEF的周長最大時,求DM+MN+NG的最小值;
(2)如圖2,連接BD,點(diǎn)P是線段BD的中點(diǎn),點(diǎn)Q是線段BC上一動點(diǎn),連接DQ,將△DPQ沿PQ翻折,且線段D′P的中點(diǎn)恰好落在線段BQ上,將△AOC繞點(diǎn)O逆時針旋轉(zhuǎn)60°得到△A′OC′,點(diǎn)T為坐標(biāo)平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)Q、A′、C′、T為頂點(diǎn)的四邊形是平行四邊形時,求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com