【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB、BC于點E、F、G,連接ED、DG.
(1)請判斷四邊形EBGD的形狀,并說明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,求GC的長.

【答案】
(1)解:四邊形EBGD是菱形.

理由:∵EG垂直平分BD,

∴EB=ED,GB=GD,

∴∠EBD=∠EDB,

∵∠EBD=∠DBC,

∴∠EDF=∠GBF,

在△EFD和△GFB中,

,

∴△EFD≌△GFB,

∴ED=BG,

∴BE=ED=DG=GB,

∴四邊形EBGD是菱形


(2)解:作DH⊥BC于H,

∵四邊形EBGD為菱形ED=DG=2,

∴∠ABC=30°,∠DGH=30°,

∴DH=1,GH= ,

∵∠C=45°,

∴DH=CH=1,

∴CG=GH+CH=1+


【解析】(1)結(jié)論四邊形EBGD是菱形.只要證明BE=ED=DG=GB即可.(2)作DH⊥BC于H,由四邊形EBGD為菱形ED=DG=2,求出GH,CH即可解決問題.
【考點精析】通過靈活運用線段垂直平分線的性質(zhì),掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點O為直線AB上的一點,EOF為直角,OC平分∠BOE.

(1)如圖1,若∠AOE=45°,寫出∠COF等于多少度;

(2)如圖1,若∠AOE=求∠COF的度效(用含的代數(shù)式表示);

(3)如圖2,若∠AOE=OD平分∠AOC,且∠AOD-BOF=45°,的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=x2經(jīng)過平移得到拋物線y=x2﹣2x , 其對稱軸與兩拋物線所圍成的陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列多項式的乘法中,能用平方差公式計算的是( )

A. (-m +n)(m - n) B. a +b)(b -a)

C. (x + 5)(x + 5) D. (3a -4b)(3b +4a)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知直線l1l2,且l3l1l2分別相交于A,B兩點,l4l1,l2分別交于C,D兩點,∠ACP1,BDP2CPD3,

P在線段AB

(1)若∠122°,233°,則∠3________;

(2)試找出∠1,2,3之間的等量關(guān)系,并說明理由;

(3)應用(2)中的結(jié)論解答下列問題;

如圖②,AB處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù);

(4)如果點P在直線l3上且在A,B兩點外側(cè)運動時,其他條件不變,試探究∠1,23之間的關(guān)系(PA,B兩點不重合),直接寫出結(jié)論即可.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一轉(zhuǎn)盤中有A、B兩個區(qū)域,A區(qū)域所對的圓心角為120°,讓轉(zhuǎn)盤自由轉(zhuǎn)動兩次.利用樹狀圖或列表求出兩次指針都落在A區(qū)域的概率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=24 cm, BC=8 cm,點P從點A開始沿折線A-B-C-D4 cm/s的速度移動,點Q從點C開始沿CD邊以2 cm/s的速度移動,如果點PQ分別從點A,C同時出發(fā),當其中一點到達點D時,另一點也隨之停止運動,設運動時間為ts.t為何值時,四邊形QPBC為矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的開口向下,與x軸和y軸分別交于點A(﹣4,0)和點B(0,2),過點B作BC⊥AB交拋物線于點C,連接AC,且∠BAC=∠BAO.
(1)求BC的長;
(2)求拋物線的解析式.

查看答案和解析>>

同步練習冊答案