【題目】“才飲長沙水,又食武昌魚”.因一代偉人毛澤東的佳句,“鄂州武昌魚”名揚天下.某網店專門銷售某種品牌真空包裝的武昌魚熟食產品,成本為30元/盒,每天銷售y(盒)與銷售單價x(元)之間存在一次函數(shù)關系,如圖所示.
(1)求y與x之間的函數(shù)關系式;
(2)如果規(guī)定每天這種武昌魚熟食產品的銷售量不低于240盒,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3 600元,試確定這種武昌魚熟食產品銷售單價的范圍.
【答案】(1)y=-10x+700;(2)銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;(3)45≤x≤55時,捐款后每天剩余利潤不低于3600元.
【解析】
(1)可用待定系數(shù)法來確定y與x之間的函數(shù)關系式;
(2)根據利潤=銷售量×單件的利潤,然后將(1)中的函數(shù)式代入其中,求出利潤和銷售單件之間的關系式,然后根據其性質來判斷出最大利潤;
(3)首先得出w與x的函數(shù)關系式,進而利用所獲利潤等于3600元時,對應x的值,根據增減性,求出x的取值范圍.
(1)設y與x的關系式是,由題意得
,解得.
故y與x之間的函數(shù)關系式為y=-10x+700
(2)由題意,得-10x+700≥240.解得x≤46.
設利潤為W=(x-30)y=(x-30)(-10x+700)
=-10x2+1 000x-21 000=-10(x-50)2+4 000.
∵-10<0,
∴x<50時,W隨x的增大而增大.
∴x=46時,W最大值=-10(46-50)2+4000=3840.
答:當銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;
(3)W-150=-10x2+1 000x-21000-150=3600.
-10(x-50)2=-250.
x-50=±5.
x1=55,x2=45.
如圖所示,由圖象得,
當45≤x≤55時,捐款后每天剩余利潤不低于3600元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AE⊥BC于E,點D在∠ABC的平分線上,AC與BD交于F,連CD,∠ACD+2∠ACB=180°,AB=2EC,BD=2,BE=3,則AF=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(探究)(1)觀察下列算式,并完成填空:
;
;
;
;
……
.(是正整數(shù))
(2)某市一廣場用正六邊形、正方形和正三角形地板磚鋪設圖案,圖案中央是一塊正六邊形地板磚,周圍是正方形和正三角形的地板磚,從里向外第一層包括6塊正方形和6塊正三角形地板磚;第二層包括6塊正方形和18塊正三角形地板磚;以此遞推.
①第3層中分別含有______塊正方形和______塊正三角形地板磚;
②第層中含有______塊正三角形地板磚(用含的代數(shù)式表示).
(應用)
該市打算在一個新建廣場中央,也采用這個樣式的圖案鋪設地面,現(xiàn)有1塊正六邊形、150塊正方形和420塊正三角形地板磚,問:鋪設這樣的圖案,最多能鋪多少層?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,,分別為,的中點,連接,,交點為. 若正方形的邊長為.
(1)求證:;
(2)將沿對折,得到(如圖),延長交的延長線于點,求的長;
(3)將繞點逆時針方向旋轉,使邊正好落在上,得到(如圖),若和相交于點,求四邊形面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點在邊上,且,,過點作,交邊于點,將沿著折疊,得,與邊分別交于點,.若的面積為15,則的面積是( )
A. 0.5B. 0.6C. 0.8D. 1.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形的頂點在軸上,頂點在軸上,是的中點,過點的反比例函數(shù)圖象交于點,連接,若.
求過點的反比例函數(shù)的解析式及所在直線的函數(shù)解析式.
設直線與軸和軸的交點分別為,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A1、A2、A3…在直線y=x上,點C1,C2,C3…在直線y=2x上,以它們?yōu)轫旤c依次構造第一個正方形A1C1A2B1,第二個正方形A2C2A3B2…,若A2的橫坐標是1,則B3的坐標是_____,第n個正方形的面積是_____.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/21/2208296361205760/2209339150704640/STEM/947823175bfc4b878475a9a15e16a258.png]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2,點E是CD邊的中點,點F是邊BC上不與點B,C重合的一個動點,把∠C沿直線EF折疊,使點C落在點C′處.當△ADC′為等腰三角形時,FC的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為3的正方形紙片ABCD對折,使AB與DC重合,折痕為EF,展平后,再將點B折到邊CD上,使邊AB經過點E,折痕為GH,點B的對應點為M,點A的對應點為N,那么折痕GH的長為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com