如圖,點A、B在⊙O上,∠AOB=90°.OA=2,AC=CB,CD∥AO交⊙O于點D,則CD的長是


  1. A.
    1
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:DC延長交OB于點E,根據(jù)平行線的性質得到∠DEO=∠AOB=90°,根據(jù)平行線分線段成比例定理求出OE、CE,根據(jù)勾股定理求出DE根據(jù)CD=DE-CE即可求出答案.
解答:解:延長DC,交OB于點E,
∵CD∥OA,∠AOB=90°,
∴∠DEO=∠AOB=90°,
∵OD=OA=2,
C是線段AB中點,
∴CE是△AOB的中位線,
∴OE=EB=1,
根據(jù)勾股定理得:DE=,
CE=OA=1,
∴CD=DE-CE=-1
故選C.
點評:本題主要考查對平行線的性質,勾股定理,平行線分線段成比例定理等知識點的理解和掌握,能求出DE、CE的長是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、如圖,點B、C在線段AD上,M是AB的中點,N是CD的中點,若MN=a,BC=b,則AD的長是
2a-b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點A、B在線段MN上,若MA=AB=BN,則稱A、B都為線段MN上的三等分點.則角的三等分線可以照此定義.精英家教網(wǎng)
(1)若線段MN=9厘米,E是線段MN上的三等分點,那么線段ME為幾厘米?
(2)在∠MON中,射線OA是∠MON的三等分線,OB是∠MOA的三等分線,設∠MOB=x,畫出圖形,并用含x的代數(shù)式表示∠MON.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點E、F在BC上,AB=DC,∠B=∠C,∠A=∠D,
求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABD和△BEP均為等腰直角△,∠BAD=∠BEP=90゜,點O為BD的中點.
(1)如圖,點P、E分別在AB、BD上,求證:AP=
2
OE;
(2)將圖1中的△BPE繞B點順時針旋轉45゜,問(1)中的結論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點C、D在線段AB上,且C為AB的一個四等分點,D為AC中點,若BC=2,則BD的長為
5
5

查看答案和解析>>

同步練習冊答案