精英家教網(wǎng)如圖,點E、F在BC上,AB=DC,∠B=∠C,∠A=∠D,
求證:BE=CF.
分析:根據(jù)已知,利用ASA判定△ABF≌△DCE,從而得到BF=CE.則可以推出BE=CF.
解答:證明:在△ABF和△DCE中
∠B=∠C
AB=DC
∠A=∠D
,
∴△ABF≌△DCE.(ASA)
∴BF=CE.
∵BF-EF=CE-EF,
∴BE=CF.
點評:本題考查了全等三角形的判定和性質(zhì);等量減等量差相等在線段相等的證明中常常用到,是一種很常用、很重要的方法,一定要牢固掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,點D、E在BC上,BD=EC,∠1=∠2,求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點E、F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.求證:AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點E、F在BC上,∠B=∠C,AB=DC,且BE=CF.
(1)求證:AF=DE.
(2)判斷△OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在正方形ABCD中:
(1)已知:如圖①,點E、F分別在BC、CD上,且AE⊥BF,垂足為M,求證:AE=BF.
(2)如圖②,如果點E、F、G分別在BC、CD、DA上,且GE⊥BF,垂足M,那么GE、BF相等嗎?證明你的結(jié)論.
(3)如圖③,如果點E、F、G、H分別在BC、CD、DA、AB上,且GE⊥HF,垂足M,那么GE、HF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點D、E在BC上,AB=AC,AD=AE.BD和CE有怎樣的關(guān)系?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案