【題目】如圖:矩形ABCD中AB=2,BC= ,⊙A是以A為圓心,半徑r=1的圓,若⊙A繞著點B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α( 0°<α<180°);當旋轉(zhuǎn)后的圓與矩形ABCD的邊相切時,α=度.
【答案】60或120
【解析】解:
∵⊙A是以A為圓心,半徑r=1的圓,AB=2,
∴當圓在矩形內(nèi)部時,則與AD、BC都相切,
設(shè)與BC的切點為E,此時圓心為A′,連接A′E、A′B,如圖,
則在Rt△A′BE中,A′E=1,A′B=AB=2,
∴∠A′BE=30°,
∴∠A′BA=90°﹣30°=60°;
當圓在矩形外部與BC相切時,設(shè)圓心為A″,
同理可求得∠A″BE=30°,
∴∠A″BA=90°+30°=120°;
綜上可知α=60°或120°,
所以答案是:60或120.
【考點精析】根據(jù)題目的已知條件,利用矩形的性質(zhì)和切線的性質(zhì)定理的相關(guān)知識可以得到問題的答案,需要掌握矩形的四個角都是直角,矩形的對角線相等;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級學生開展踢毽子比賽活動,每班派5名學生參加.按團體總分多少排列名次.在規(guī)定時間每人踢100個以上(含100個)為優(yōu)秀,下表是成績最好的甲班和乙班5名學生的比賽數(shù)據(jù)(單位:個)
請你回答下列問題:
(1)填寫表格;
(2)根據(jù)以上信息,請你回答下列問題:
①從平均數(shù)、眾數(shù)相結(jié)合的角度分析,應(yīng)該把冠軍獎狀發(fā)給哪一個班級?
②從優(yōu)秀率的角度分析,應(yīng)該把冠軍獎狀發(fā)給哪一個班級?
(3)如果兩個班各選兩名同學參加市踢毽子的比賽,你認為哪個班級團體實力更強?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點M為直線AB上一動點, 都是等邊三角形,連接BN
求證: ;
分別寫出點M在如圖2和圖3所示位置時,線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;
如圖4,當時,證明: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市規(guī)定:凡一次購買大米160kg以上可以按原價打折出售,購買160kg(包括160kg)以下只能按原價出售.小明家到超市買大米,原計劃買的大米,只能按原價付款,需要600元;若多買40kg,則按打折價格付款,恰巧需要也是600元.
(1)求小明家原計劃購買大米數(shù)量x(千克)的范圍;
(2)若按原價購買4kg與打折價購買5kg的款相同,那么原計劃小明家購買多少大米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是( )
A. 兩人從起跑線同時出發(fā),同時到達終點
B. 小蘇跑全程的平均速度大于小林跑全程的平均速度
C. 小蘇前15s跑過的路程大于小林前15s跑過的路程
D. 小林在跑最后100m的過程中,與小蘇相遇2次
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個蠟燭燃燒試驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(cm)與燃燒時間x(h)的關(guān)系如圖所示,請根據(jù)圖像提供的信息解答下列問題.
(1)甲、乙兩根蠟燭燃燒前的高度分別是____________,從點燃到燃盡所用的時間分別是__________;
(2)分別求甲、乙兩根蠟燭燃燒時,y與x之間的函數(shù)表達式;
(3)當x為何值時,甲、乙兩根蠟燭在燃燒過程中的高度相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC⊥AB于點B,連接OC交⊙O于點E,弦AD∥OC,弦DF⊥AB于點G.
(1)求證:點E是 的中點;
(2)求證:CD是⊙O的切線;
(3)若AD=12,⊙O的半徑為10,求弦DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解成1×12,2×6或3×4,因為12-1>6-2>4-3,所有3×4是最佳分解,所以F(12)=.
(1)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對任意一個完全平方數(shù)m,總有F(m)=1.
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com