分析 過B作BQ⊥EN,由△ABE≌△QBE,△BCN≌△BQN,從而可得到∠QBE=∠ABE,∠QBN=∠NBC,從而可知∠EBQ+∠QBN=$\frac{1}{2}$∠ABC=45°;
解答 證明:如圖,過B作BQ⊥PH,垂足為Q.
∵GE=BG,
∴∠EBG=∠GEB.
又∵∠GEH=∠GBC=90°,
∴∠GEH-∠GEB=∠GBC-∠GBE.
即∠EBC=∠BEQ.
又∵AD∥BC,
∴∠AEB=∠EBC.
∴∠AEB=∠BEQ.
在△ABE和△QBE中,
$\left\{\begin{array}{l}{∠A=∠BQE}\\{∠AEB=∠BEQ}\\{BE=BE}\end{array}\right.$
∴△ABE≌△QBE(AAS).
∴∠ABE=∠QBE,AB=BQ,
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴∠QBH=∠HBC,
∴∠EBN=∠EBQ+∠QBN=$\frac{1}{2}$∠ABC=45°.
點評 本題主要考查的是折疊的性質(zhì)和全等三角形的性質(zhì)和判定,證得兩組三角形全等是解題的關(guān)鍵.
科目:初中數(shù)學 來源:2017屆廣東省南雄市九年級下學期模擬考試數(shù)學試卷(解析版) 題型:單選題
一個正多邊形的內(nèi)角是135°,這個多邊形的邊數(shù)是( )
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2016-2017學年江蘇省句容市華陽片八年級下學期第一次月考數(shù)學試卷(解析版) 題型:解答題
如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點D.
(1)求證:BE=CF;
(2)當四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com