如圖,ABCD的對角線相交于點O,請你添加一個條件   (只添一個即可),使ABCD是矩形.
AC=BD(答案不唯一)

試題分析:根據(jù)矩形的判定定理推出即可:
添加,由對角線相等的平行四邊形是矩形可判定ABCD是矩形;
添加∠ABC=90°等,由有一個角是直角的平行四邊形是矩形可判定ABCD是矩形。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.
性質:如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.
理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且SACD=SBCD
應用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O.
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.
探究:在△ABC中,∠A=30°,AB=4,點D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時針排列),使∠DAF=60°,連接CF.
(1)如圖1,當點D在邊BC上時,求證:①BD=CF;②AC=CF+CD;
(2)如圖2,當點D在邊BC的延長線上且其他條件不變時,結論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關系,并說明理由;
(3)如圖3,當點D在邊CB的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AD=2AB,點M、N分別在邊AD、BC上,連接BM、DN,若四邊形MBND是菱形,則等于【   】

A.       B.       C.      D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2013年四川綿陽4分)對正方形ABCD進行分割,如圖1,其中E、F分別是BC、CD的中點,M、N、G分別是OB、OD、EF的中點,沿分化線可以剪出一副“七巧板”,用這些部件可以拼出很多圖案,圖2就是用其中6塊拼出的“飛機”.若△GOM的面積為1,則“飛機”的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列命題的逆命題不正確的是
A.平行四邊形的對角線互相平分B.兩直線平行,內(nèi)錯角相等
C.等腰三角形的兩個底角相等D.對頂角相等

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知四邊形ABCD的兩條對角線AC與BD互相垂直,則下列結論正確的是
A.當AC=BD時,四邊形ABCD是矩形
B.當AB=AD,CB=CD時,四邊形ABCD是菱形
C.當AB=AD=BC時,四邊形ABCD是菱形
D.當AC=BD,AD=AB時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖;在等腰梯形ABCD中,AD=2,BC=4,DC=,高DF=   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在□ABCD中,E、F分別在邊BA、DC的延長線上,已知AE=CF,P、Q分別是DE和FB的中點,求證:四邊形EQFP是平行四邊形.
 

查看答案和解析>>

同步練習冊答案