定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.
性質(zhì):如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.
理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且SACD=SBCD
應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O.
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.
探究:在△ABC中,∠A=30°,AB=4,點D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.
應(yīng)用:(1)證明見解析
(2)△ABC的面積是2或。

試題分析:應(yīng)用:(1)連接EF,根據(jù)一組對邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,從而根據(jù)平行四邊形的性質(zhì)證得OE=OB,即可證得△AOE和△AOB是友好三角形。
(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點,則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD﹣2SABF即可求解。
解:應(yīng)用:(1)證明:如圖,連接EF,

∵四邊形ABCD是矩形,
∴AD∥BC。
∵AE=BF,∴四邊形ABFE是平行四邊形。
∴OE=OB!唷鰽OE和△AOB是友好三角形。
探究:分為兩種情況:
①如圖1,連接A′B,過B作BM⊥AC于M,

∵SACD=SBCD.∴AD=BD=AB。
∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2。
∵△A′CD與△ABC重合部分的面積等于△ABC面積的,
∴SDOC=SABC=SBDC=SADC=SA′DC。
∴DO=OB,A′O=CO!嗨倪呅蜛′DCB是平行四邊形。∴BC=A′D=2。
∵AB=4,∠BAC=30°,∴BM=AB=2=BC。
∴C和M重合!唷螦CB=90°。
由勾股定理得:,
∴△ABC的面積是×BC×AC=×2×=
②如圖2,連接A′B,過C作CQ⊥A′D于Q,

∵SACD=SBCD,∴AD=BD=AB。
∵沿CD折疊A和A′重合,∴AD=A′D=AB4=2。
∵△A′CD與△ABC重合部分的面積等于△ABC面積的,
∴SDOC=SABC=SBDC=SADC=SA′DC,
∴DO=OA′,BO=CO。∴四邊形A′DCB是平行四邊形。
∴BD=A′C=2。
∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,
∴SABC=2SADC=2SA′DC=2××A′D×CQ=2××2×1=2。
綜上所述,△ABC的面積是2或。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在由邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上.
請按要求完成下列各題:
(1)畫AD∥BC(D為格點),連接CD;
(2)試判斷△ABC的形狀?請說明理由;
(3)若E為BC中點,F(xiàn)為AD中點.四邊形AECF是什么特殊的四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=8,BD=6,則四邊形EFGH的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年廣東梅州8分)如圖,在四邊形ABFC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB與點E,且CF=AE,

(1)求證:四邊形BECF是菱形;
(2)若四邊形BECF為正方形,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,已知∠A=60°,AB=5,則△ABD的周長是
A.10B.12C.15D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,ABCD的對角線相交于點O,請你添加一個條件   (只添一個即可),使ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

用下列一種多邊形不能鋪滿地面的是
A.正方形B.正十邊形C.正六邊形D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,∠BAD=120°.已知△ABC的周長是15,則菱形ABCD的周長是
A.25B.20C.15D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知菱形ABCD的邊長是6,點E在直線AD上,DE=3,連結(jié)BE與對角線AC相交于點M,則的值是          

查看答案和解析>>

同步練習(xí)冊答案