已知四邊形ABCD的兩條對(duì)角線AC與BD互相垂直,則下列結(jié)論正確的是
A.當(dāng)AC=BD時(shí),四邊形ABCD是矩形
B.當(dāng)AB=AD,CB=CD時(shí),四邊形ABCD是菱形
C.當(dāng)AB=AD=BC時(shí),四邊形ABCD是菱形
D.當(dāng)AC=BD,AD=AB時(shí),四邊形ABCD是正方形
C

試題分析:A、對(duì)角線AC與BD互相垂直,AC=BD時(shí),無(wú)法得出四邊形ABCD是矩形,故此選項(xiàng)錯(cuò)誤。
B、當(dāng)AB=AD,CB=CD時(shí),無(wú)法得到四邊形ABCD是菱形,故此選項(xiàng)錯(cuò)誤。
C、當(dāng)兩條對(duì)角線AC與BD互相垂直,AB=AD=BC時(shí),∴BO=DO,AO=CO,
∴四邊形ABCD是平行四邊形。
∵兩條對(duì)角線AC與BD互相垂直,∴平行四邊形ABCD是菱形,故此選項(xiàng)正確。
D、當(dāng)AC=BD,AD=AB時(shí),無(wú)法得到四邊形ABCD是正方形,故此選項(xiàng)錯(cuò)誤。
故選C。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,AB∥CD,∠ABD=90°,AB=BD,在BC上截取BE,使BE=BA,過(guò)點(diǎn)B作BF⊥BC于B,交AD于點(diǎn)F.連接AE,交BD于點(diǎn)G,交BF于點(diǎn)H.
(1)已知AD=,CD=2,求sin∠BCD的值;
(2)求證:BH+CD=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。

(1)求證:OE=OF;
(2)若BC=,求AB的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013年四川攀枝花6分)如圖所示,已知在平行四邊形ABCD中,BE=DF
求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對(duì)角線DB重合,點(diǎn)A落在點(diǎn)A′處,折痕為DE,則A′E的長(zhǎng)是
A.1B.C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD為等腰梯形,AD∥BC,連結(jié)AC、BD.在平面內(nèi)將△DBC沿BC翻折得到△EBC.

(1)四邊形ABEC一定是什么四邊形?
(2)證明你在(1)中所得出的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,ABCD的對(duì)角線相交于點(diǎn)O,請(qǐng)你添加一個(gè)條件   (只添一個(gè)即可),使ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,下列結(jié)論正確的是

A.SABCD=4SAOB
B.AC=BD
C.AC⊥BD
D.ABCD是軸對(duì)稱圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,連接BD,過(guò)點(diǎn)A作BD的垂線,交BC于E,若EC=3cm,CD=4cm,則梯形ABCD的面積是_________cm².

查看答案和解析>>

同步練習(xí)冊(cè)答案