【題目】如圖所示,在ABCD中,ECD延長(zhǎng)線上的一點(diǎn),BEAD交于點(diǎn)F,DECD.

(1)求證:△ABF∽△CEB;

(2)若△DEF的面積為2,求ABCD的面積.

【答案】(1)見(jiàn)解析;(2)16

【解析】

試題(1)要證△ABF∽△CEB,需找出兩組對(duì)應(yīng)角相等;已知了平行四邊形的對(duì)角相等,再利用AB∥CD,可得一對(duì)內(nèi)錯(cuò)角相等,則可證.

2)由于△DEF∽△EBC,可根據(jù)兩三角形的相似比,求出△EBC的面積,也就求出了四邊形BCDF的面積.同理可根據(jù)△DEF∽△AFB,求出△AFB的面積.由此可求出ABCD的面積.

試題解析:(1)證明:四邊形ABCD是平行四邊形

∴∠A=∠C,AB∥CD

∴∠ABF=∠CEB

∴△ABF∽△CEB

2)解:四邊形ABCD是平行四邊形

∴AD∥BCAB平行且等于CD

∴△DEF∽△CEB,△DEF∽△ABF

∵DE=CD

,

∵SDEF=2

SCEB=18,SABF=8

∴S四邊形BCDF=SBCE-SDEF=16

∴S四邊形ABCD=S四邊形BCDF+SABF=16+8=24

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:

12×231132×21,

13×341143×31

23×352253×32,

34×473374×43,

62×286682×26

……

以上每個(gè)等式中兩邊數(shù)字是分別對(duì)稱(chēng)的,且每個(gè)等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱(chēng)這類(lèi)等式為數(shù)字對(duì)稱(chēng)等式

1)根據(jù)上述各式反映的規(guī)律填空,使式子稱(chēng)為數(shù)字對(duì)稱(chēng)等式

52×      ×25

   ×396693×   ;

2)設(shè)這類(lèi)等式左邊兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,且2≤a+b≤9,寫(xiě)出表示數(shù)字對(duì)稱(chēng)等式一般規(guī)律的式子(含a,b),并證明;

3)若(2)中a,b表示一個(gè)兩位數(shù),例如a11,b22,則1122×223311113322×2211,請(qǐng)寫(xiě)出表示這類(lèi)數(shù)字對(duì)稱(chēng)等式一般規(guī)律的式子(含a,b),并寫(xiě)出a+b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的方格紙中.

1)作出關(guān)于對(duì)稱(chēng)的圖形

2)說(shuō)明,可以由經(jīng)過(guò)怎樣的平移變換得到?

3)以所在的直線為軸,的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,試在軸上找一點(diǎn),使得最小(保留找點(diǎn)的作圖痕跡,描出點(diǎn)的位置,并寫(xiě)出點(diǎn)的坐標(biāo))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)村莊AB在河CD的同側(cè),AB兩村到河的距離分別為AC=1千米,BD=3千米,CD=3千米.現(xiàn)要在河邊CD上建造一水廠,向AB兩村送自來(lái)水.鋪設(shè)水管的工程費(fèi)用為每千米20000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)水管的費(fèi)用最省,并求出鋪設(shè)水管的總費(fèi)用W

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過(guò)點(diǎn)A(﹣2,2),過(guò)點(diǎn)A作ABy軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過(guò)點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱(chēng)軸,點(diǎn)B經(jīng)軸對(duì)稱(chēng)變換得到的點(diǎn)B'在此反比例函數(shù)的圖象上,則t的值是(。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過(guò)A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).

(1)求拋物線的函數(shù)關(guān)系式;

(2)若P為線段AC上一點(diǎn),且SPCD=2SPAD,求點(diǎn)P的坐標(biāo);

(3)如圖2,連接OD,過(guò)點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半圓O中,AB是直徑,AB=13,點(diǎn)C是半圓O上一點(diǎn),AC=12,弦AD平分∠BAC,則sinDAB=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DCAB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB于點(diǎn)F,連接BE

1)求證:AC平分∠DAB;

2)求證:△PCF是等腰三角形;

3)若∠BEC=30°,求證:以BC,BEAC邊的三角形為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射擊隊(duì)準(zhǔn)備從甲、乙兩名隊(duì)員中選取一名隊(duì)員代表該隊(duì)參加比賽,特為甲、乙兩名隊(duì)員舉行了一次選拔賽,要求這兩名隊(duì)員各射擊10次.比賽結(jié)束后,根據(jù)比賽成績(jī)情況,將甲、乙兩名隊(duì)員的比賽成績(jī)制成了如下的統(tǒng)計(jì)表:

甲隊(duì)員成績(jī)統(tǒng)計(jì)表

成績(jī)(環(huán))

7

8

9

10

次數(shù)(次)

5

1

2

2

乙隊(duì)員成績(jī)統(tǒng)計(jì)表

成績(jī)(環(huán))

7

8

9

10

次數(shù)(次)

4

3

2

1

1)經(jīng)過(guò)整理,得到的分析數(shù)據(jù)如表,求表中的,的值.

隊(duì)員

平均數(shù)

中位數(shù)

眾數(shù)

方差

8

75

7

7

1

2)根據(jù)甲、乙兩名隊(duì)員的成績(jī)情況,該射擊隊(duì)準(zhǔn)備選派乙參加比賽,請(qǐng)你寫(xiě)出一條射擊隊(duì)選派乙的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案