5、若△ABC的三邊長(zhǎng)分別為a,b,c,則下列條件不能推出△ABC是直角三角形的是( 。
分析:是邊之間關(guān)系的,根據(jù)勾股定理的逆定理進(jìn)行判斷;是角之間關(guān)系的結(jié)合三角形內(nèi)角定理求最大角,即可確定.
解答:解:A、∵a2-c2=b2,即a2=b2+c2,從而可確定此三角形是直角三角形,此選項(xiàng)正確;
B、∵∠A+∠B=∠C,根據(jù)三角形內(nèi)角定理可求∠C=90°,從而可確定此三角形是直角三角形,此選項(xiàng)正確;
C、a2+b2=2ab,不能確定此三角形是直角三角形,此選項(xiàng)錯(cuò)誤;
D、∵∠A=2∠B=2∠C,根據(jù)三角形內(nèi)角定理可求∠C=90°,從而可確定此三角形是直角三角形,此選項(xiàng)正確.
故選C.
點(diǎn)評(píng):本題考查了勾股定理的逆定理、三角形內(nèi)角和定理.解題的關(guān)鍵是求出最大角的度數(shù)、靈活掌握勾股定理的逆定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

Rt△ABC的兩邊長(zhǎng)分別是3和4,若一個(gè)正方形的邊長(zhǎng)是△ABC的第三邊,則這個(gè)正方形的面積是(  )
A、25B、7C、12D、25或7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•吉林)已知△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c,若a,b是關(guān)于x的一元二次方程x2-(c+4)x+4c+8=0的二根,且9c=25a•sinA.
(1)求證:△ABC是直角三角形.
(2)求△ABC的三邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若△ABC中的三邊長(zhǎng)分別是9、12、15,則△ABC的面積是
54
54

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1課3練 單元達(dá)標(biāo)測(cè)試八年級(jí)數(shù)學(xué)(下) 國(guó)標(biāo)人教版 題型:013

若△ABC的三邊長(zhǎng)分別是8,15,17,則最短邊上的中線長(zhǎng)是

[  ]

A.7

B.

C.

D.以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇省九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題12分)△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,關(guān)于x的方程x2-2axb2=0的兩根為x1x2,x軸上兩點(diǎn)M、N的坐標(biāo)分別為(x1,0)、(x2,0),其中M的坐標(biāo)是(ac,0);P是y軸上一點(diǎn),點(diǎn)。

1.(1)試判斷△ABC的形狀,并說明理由;

2.(2)若SMNP=3SNOP,  ①求sinB的值; ②判斷△ABC的三邊長(zhǎng)能否取一組適當(dāng)?shù)闹担埂?i>MND是等腰直角三角形?如能,請(qǐng)求出這組值;如不能,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案