【題目】甲、乙兩人從少年宮出發(fā),沿相同的路線分別以不同的速度勻速跑向體育館,甲先跑一段路程后,乙開始出發(fā),當(dāng)乙超出甲150米時(shí),乙停在此地等候甲,兩人相遇后乙又繼續(xù)以原來的速度跑向體育館.如圖是甲、乙兩人在跑步的全過程中經(jīng)過的路程y(米)與甲出發(fā)的時(shí)間x(秒)的函數(shù)圖象,則乙在途中等候甲用了( 。┟
A.200B.150C.100D.80
【答案】C
【解析】
首先求得C點(diǎn)的縱坐標(biāo),即a的值,則CD段的路程可以求得,時(shí)間是560-500=60秒,則乙跑步的速度即可求得.
解:根據(jù)圖象可以得到:甲共跑了900米,用了600秒,則速度是:900÷600=1.5米/秒;
甲跑500秒時(shí)的路程是:500×1.5=750米,則CD段的長是900﹣750=150米,
時(shí)間是:560﹣500=60秒,則速度是:150÷60=2.5米/秒;
甲跑150米用的時(shí)間是:150÷1.5=100秒,則甲比乙早出發(fā)100秒.
乙跑750米用的時(shí)間是:750÷2.5=300秒,
則乙在途中等候甲用的時(shí)間是:500﹣300﹣100=100秒.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,連接AC,BD
交于點(diǎn)M.
①的值為 ;②∠AMB的度數(shù)為 °;
(2)如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點(diǎn)M.求的值及∠AMB的度數(shù);
(3)在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M.若OD=,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)P是BA延長線上一點(diǎn),PC是⊙O的切線,切點(diǎn)為C,過點(diǎn)B作BD⊥PC交PC的延長線于點(diǎn)D,連接BC.求證:
(1)∠PBC=∠CBD;
(2)=ABBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一矩形OABC放在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)E是邊AB上的一個(gè)動(dòng)點(diǎn)不與點(diǎn)A、B重合,過點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F
若的面積為,且,求k的值;
若,,反比例函數(shù)的圖象與邊AB、邊BC交于點(diǎn)E和F,當(dāng)沿EF折疊,點(diǎn)B恰好落在OC上,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是對(duì)角線BD上一點(diǎn),連接AE,將DE繞D點(diǎn)逆時(shí)針方向旋轉(zhuǎn)90°到DF,連接BF,交DC于點(diǎn)G,若DG=3,CG=2,則線段AE的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB為⊙O直徑,BC為⊙O切線,切點(diǎn)為B,CO平行于弦AD,作直線DC.
(1)求證:DC為⊙O切線;
(2) 若AD·OC=8,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠C=90°,AC=2,BC=2,點(diǎn)O是邊AB上的一個(gè)動(dòng)點(diǎn),以點(diǎn)O為圓心,OA為半徑作⊙O,與邊AC交于點(diǎn)M.
(1)如圖1,當(dāng)⊙O經(jīng)過點(diǎn)C時(shí),⊙O的直徑是 ;
(2)如圖2,當(dāng)⊙O與邊BC相切時(shí),切點(diǎn)為點(diǎn)N,試求⊙O與△ABC重合部分的面積;
(3)如圖3,當(dāng)⊙O與邊BC相交時(shí),交點(diǎn)為E、F,設(shè)CM=x,就判斷AEAF是否為定值,若是,求出這個(gè)定值;若不是,請(qǐng)用含x的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC中點(diǎn),AE∥BD,且AE=BD.
(1)求證:四邊形AEBD是矩形;
(2)連接CE交AB于點(diǎn)F,若∠ABE=30°,AE=2,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸相交于點(diǎn),與軸相交于點(diǎn),以點(diǎn)為圓心,線段的長為半徑畫弧,與直線位于第一象限的部分相交于點(diǎn),則點(diǎn)的坐標(biāo)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com