【題目】把下列方程化成的形式,寫(xiě)出其中,,的值,并計(jì)算的值:
; ;
.
【答案】,,,;,,,;,,,.
【解析】
(1)運(yùn)用移項(xiàng)法則把原方程變形,根據(jù)一元二次方程的定義解答即可;
(2)運(yùn)用移項(xiàng)法則把原方程變形,根據(jù)一元二次方程的定義解答即可;
(3)運(yùn)用整式的乘法法則把原方程變形,根據(jù)一元二次方程的定義解答即可.
(1)x2﹣3x=4,整理得:x2﹣3x﹣4=0,a=1,b=﹣3,c=﹣4,b2﹣4ac=(﹣3)2﹣4×1×(﹣4)=25;
(2)4x2+1=4x,整理得:4x2﹣4x+1=0,a=4,b=﹣4,c=1,b2﹣4ac=(﹣4)2﹣4×1×4=0;
(3)(2x+1)(x+2)=3,整理得:2x2+5x﹣1=0,a=2,b=5,c=﹣1,b2﹣4ac=52﹣4×2×(﹣1)=33.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD中,AD∥BC,若∠DAB的平分線AE交CD于E,連接BE,且BE恰好平分∠ABC,則AB的長(zhǎng)與AD+BC的大小關(guān)系是( 。
A.AB>AD+BCB.AB<AD+BCC.AB=AD+BCD.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:三角形ABC中,∠A=90,AB=AC,D為BC的中點(diǎn),如圖,E,F分別是AB,AC上的點(diǎn),且BE=AF,求證:△DEF為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,有一張長(zhǎng)為、寬為的長(zhǎng)方形紙片,現(xiàn)要在這張紙片上畫(huà)兩個(gè)小長(zhǎng)方形,使小長(zhǎng)方形的每條邊都與大長(zhǎng)方形的一邊平行,并且每個(gè)小長(zhǎng)方形的長(zhǎng)與寬之比也都為,然后把它們剪下,這時(shí),所剪得的兩張小長(zhǎng)方形紙片的周長(zhǎng)之和有最大值.求這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)D是等邊△ABC的邊BC上一點(diǎn),連接AD,以AD為一邊,向右作等邊三角形ADE,連接CE,求證:AC=CD+CE.
(類(lèi)比探究)
(1)如果點(diǎn)D在BC的延長(zhǎng)線上,其它條件不變,請(qǐng)?jiān)趫D②的基礎(chǔ)上畫(huà)出滿足條件的圖形,寫(xiě)出線段AC,CD,CE之間的數(shù)量關(guān)系,并說(shuō)明理由.
(2)如果點(diǎn)D在CB的延長(zhǎng)線上,請(qǐng)?jiān)趫D③的基礎(chǔ)上畫(huà)出滿足條件的圖形,并直接寫(xiě)出AC,CD,CE之間的數(shù)量關(guān)系,不需要說(shuō)明理由.數(shù)量關(guān)系:_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,為直徑,為的切線,交的延長(zhǎng)線于點(diǎn),.
求的度數(shù);
若點(diǎn)在上,,垂足為,,求圖中陰影部分的面積.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為的直徑,是外一點(diǎn),交于點(diǎn),過(guò)點(diǎn)作的切線,交于點(diǎn),,作于點(diǎn),交于點(diǎn).
求證:是的切線;
求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩人以相同路線前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí),圖中1, 分別表示甲、乙兩人前往目的地所走的路程S(千米)隨時(shí)間(分)變化的函數(shù)圖象,以下說(shuō)法:①甲比乙提前12分鐘到達(dá);②甲的平均速度為15千米/小時(shí);③甲、乙相遇時(shí),乙走了6千米;④乙出發(fā)6分鐘后追上甲,其中正確的是( )
A.①②B.③④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,等腰三角形ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),DE⊥AB與點(diǎn)E、DF⊥AC與點(diǎn)F.求證:DE= DF;
(2)如圖2,等腰三角形ABC中,AB=AC=13,BC=10,點(diǎn)D是BC邊上的動(dòng)點(diǎn),DE⊥AB與點(diǎn)E、DF⊥AC與點(diǎn)F.請(qǐng)問(wèn)DE+DF的值是否隨點(diǎn)D位置的變化而變化?若不變,請(qǐng)直接寫(xiě)出DE+DF的值;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com