【題目】用配方法解方程x2-8x+7=0,則配方正確的是(  )

A. x+42=9 B. x﹣42=9 C. x﹣82=16 D. x+82=57

【答案】B

【解析】試題分析:根據(jù)配方法的要求,把常數(shù)項移項可得x2-8x=-7,然后方程兩邊同時加上一次項系數(shù)一半的平方,可得x2-8x+16=9,即(x﹣4)2=9.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為申辦2013年冬奧會,須改變某城市的交通狀況,在街道拓寬工程中,要伐掉一棵樹AB,在地面上事先劃定以B為圓心,半徑與AB等長的圓形危險區(qū).現(xiàn)在某工人站在離B點(diǎn)3米遠(yuǎn)的D處,從C點(diǎn)測得樹的頂端A點(diǎn)的仰角為60°,樹的底部B點(diǎn)的俯角為30°.問:距離B點(diǎn)8米元的保護(hù)物是否存在危險?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(x﹣1)2=4

解方程:x2+2x﹣3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC三個頂點(diǎn)的坐標(biāo)分別是A2,2,B4,0,C4,4

1請畫出ABC向左平移6個單位長度后得到的A1B1C1;

2以點(diǎn)O為位似中心,將ABC縮小為原來的,得到A2B2C2,請在y軸右側(cè)畫出A2B2C2,并求出A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A1,1,且與直線y=x2交于B,C兩點(diǎn).

1求拋物線的解析式及點(diǎn)C的坐標(biāo);

2求證:ABC是直角三角形;

3若點(diǎn)N為x軸上的一個動點(diǎn),過點(diǎn)N作MNx軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與ABC相似?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一元二次方程(m-2)x2-4mx+2m-6=0有兩個相等的實(shí)數(shù)根,則m等于(  )

A. -6 B. 1 C. -6或1 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在用計算器計算一個多邊形的內(nèi)角和時,小明的結(jié)果為1825°,小芳立即判斷他的結(jié)果是錯誤的,小明仔細(xì)地復(fù)算了一遍,果然發(fā)現(xiàn)自己把一個角的度數(shù)輸入了兩遍.則多輸入的那個角的度數(shù)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點(diǎn)D′未到達(dá)點(diǎn)B時,A′C′CDED′C′CB于點(diǎn)F,連接EF,當(dāng)四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE△EFC′是否全等?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+(2m+1)x+m(m﹣3)(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是該拋物線上不同的三點(diǎn),現(xiàn)將拋物線的對稱軸繞坐標(biāo)原點(diǎn)O逆時針旋轉(zhuǎn)90°得到直線a,過拋物線頂點(diǎn)P作PH⊥a于H.

(1)用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);

(2)若無論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個公共點(diǎn),求k的值;

(3)當(dāng)1<PH≤6時,試比較y1,y2,y3之間的大。

查看答案和解析>>

同步練習(xí)冊答案