【題目】用配方法解方程x2-8x+7=0,則配方正確的是( )
A. (x+4)2=9 B. (x﹣4)2=9 C. (x﹣8)2=16 D. (x+8)2=57
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為申辦2013年冬奧會,須改變某城市的交通狀況,在街道拓寬工程中,要伐掉一棵樹AB,在地面上事先劃定以B為圓心,半徑與AB等長的圓形危險區(qū).現(xiàn)在某工人站在離B點(diǎn)3米遠(yuǎn)的D處,從C點(diǎn)測得樹的頂端A點(diǎn)的仰角為60°,樹的底部B點(diǎn)的俯角為30°.問:距離B點(diǎn)8米元的保護(hù)物是否存在危險?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4)
(1)請畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在y軸右側(cè)畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點(diǎn)N為x軸上的一個動點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一元二次方程(m-2)x2-4mx+2m-6=0有兩個相等的實(shí)數(shù)根,則m等于( )
A. -6 B. 1 C. -6或1 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在用計算器計算一個多邊形的內(nèi)角和時,小明的結(jié)果為1825°,小芳立即判斷他的結(jié)果是錯誤的,小明仔細(xì)地復(fù)算了一遍,果然發(fā)現(xiàn)自己把一個角的度數(shù)輸入了兩遍.則多輸入的那個角的度數(shù)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點(diǎn)D′未到達(dá)點(diǎn)B時,A′C′交CD于E,D′C′交CB于點(diǎn)F,連接EF,當(dāng)四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+(2m+1)x+m(m﹣3)(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是該拋物線上不同的三點(diǎn),現(xiàn)將拋物線的對稱軸繞坐標(biāo)原點(diǎn)O逆時針旋轉(zhuǎn)90°得到直線a,過拋物線頂點(diǎn)P作PH⊥a于H.
(1)用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);
(2)若無論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個公共點(diǎn),求k的值;
(3)當(dāng)1<PH≤6時,試比較y1,y2,y3之間的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com