【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A,B,C,D都在這些小正方形上,AB與CD相交于點(diǎn)O,則tan∠AOD等于( 。
A. B. 2C. 1D.
【答案】B
【解析】
連接BE,與CD交于點(diǎn)F,根據(jù)正方形的性質(zhì)可得BF=CF,證明△ACO∽△BHO,根據(jù)相似三角形的性質(zhì)可得HO:CO=BH:AC=1:3,得到
在Rt△OBF中,求出tan∠BOF==2,即可求出tan∠AOD.
解:如圖,連接BE,與CD交于點(diǎn)F,
∵四邊形BCEH是正方形,
∴,CH=BE,BE⊥CH,
∴BF=CF,
∵AC∥BH,
∴△ACO∽△BHO,
∴HO:CO=BH:AC=1:3,
∵CF=HF,
∴HO:HF=1:2,
∴
在Rt△OBF中,tan∠BOF==2,
∵∠AOD=∠BOF,
∴tan∠AOD=2.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】知識(shí)背景
當(dāng)a>0且x>0時(shí),因?yàn)椋?/span>﹣)2≥0,所以x﹣2+≥0,從而x+(當(dāng)x=時(shí)取等號(hào)).
設(shè)函數(shù)y=x+(a>0,x>0),由上述結(jié)論可知:當(dāng)x=時(shí),該函數(shù)有最小值為2.
應(yīng)用舉例
已知函數(shù)為y1=x(x>0)與函數(shù)y2=(x>0),則當(dāng)x==2時(shí),y1+y2=x+有最小值為2=4.
解決問(wèn)題
(1)已知函數(shù)為y1=x+3(x>﹣3)與函數(shù)y2=(x+3)2+9(x>﹣3),當(dāng)x取何值時(shí),有最小值?最小值是多少?
(2)已知某設(shè)備租賃使用成本包含以下三部分:一是設(shè)備的安裝調(diào)試費(fèi)用,共490元;二是設(shè)備的租賃使用費(fèi)用,每天200元;三是設(shè)備的折舊費(fèi)用,它與使用天數(shù)的平方成正比,比例系數(shù)為0.001.若設(shè)該設(shè)備的租賃使用天數(shù)為x天,則當(dāng)x取何值時(shí),該設(shè)備平均每天的租貨使用成本最低?最低是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知邊長(zhǎng)為4的正方形ABCD,E是BC邊上一動(dòng)點(diǎn)(與B、C不重合),連結(jié)AE,作EF⊥AE交∠BCD的外角平分線于F,設(shè)BE=x,△ECF的面積為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線解析式:
(2)拋物線對(duì)稱軸上存在一點(diǎn),連接、,當(dāng)值最大時(shí),求點(diǎn)H坐標(biāo):
(3)若拋物線上存在一點(diǎn),,當(dāng)時(shí),求點(diǎn)坐標(biāo):
(4)若點(diǎn)M是平分線上的一點(diǎn),點(diǎn)是平面內(nèi)一點(diǎn),若以、、、為頂點(diǎn)的四邊形是矩形,請(qǐng)直接寫出點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與坐標(biāo)軸分別交于A、B兩點(diǎn),與反比例函數(shù)y=的圖象在第一象限的交點(diǎn)為C,CD⊥x軸于D,若OB=3,OD=6,△AOB的面積為3.
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)當(dāng)x>0時(shí),比較kx+b與的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小敏學(xué)習(xí)之余設(shè)計(jì)了一個(gè)求函數(shù)表達(dá)式的程序,具體如圖所示,則當(dāng)輸入下列點(diǎn)的坐標(biāo)時(shí),請(qǐng)按程序指令解答.
(1)P1(1,0),P2(﹣3,0).
(2)P1(2,﹣1),P2(4,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一筆直的海岸線上有兩個(gè)觀測(cè)站,,從測(cè)得船
在北偏東的方向,從測(cè)得船在北偏東的方向,求船離海岸線的距離(即的長(zhǎng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)興趣小組的同學(xué)們,想利用自己所學(xué)的數(shù)學(xué)知識(shí)測(cè)量學(xué)校旗桿的高度:下午活動(dòng)時(shí)間,興趣小組的同學(xué)們來(lái)到操場(chǎng),發(fā)現(xiàn)旗桿的影子有一部分落在了墻上(如圖所示).同學(xué)們按照以下步驟進(jìn)行測(cè)量:測(cè)得小明的身高1.65米,此時(shí)其影長(zhǎng)為2.5米;在同一時(shí)刻測(cè)量旗桿影子落在地面上的影長(zhǎng)BC為9米,留在墻上的影高CD為2米,請(qǐng)你幫助興趣小組的同學(xué)們計(jì)算旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com