【題目】小明在一個(gè)半圓形的花園的周邊散步,如圖1,小明從圓心O出發(fā),按圖中箭頭所示的方向,依次勻速走完下列三條線路:(1)線段OA;(2)半圓弧AB;(3)線段BO后,回到出發(fā)點(diǎn).小明離出發(fā)點(diǎn)的距離S(小明所在位置與O點(diǎn)之間線段的長(zhǎng)度)與時(shí)間t之間的圖象如圖2所示,請(qǐng)據(jù)圖回答下列問(wèn)題(圓周率π的值取3):
(1)請(qǐng)直接寫(xiě)出:花園的半徑是 米,小明的速度是 米/分,a= ;
(2)若沿途只有一處小明遇到了一位同學(xué)停下來(lái)交談了2分鐘,并且小明在遇到同學(xué)的前后,始終保持速度不變,請(qǐng)你求出:
①小明遇到同學(xué)的地方離出發(fā)點(diǎn)的距離;
②小明返回起點(diǎn)O的時(shí)間.
【答案】(1)100,50,8;(2)①50米,②12分鐘.
【解析】
由t在2-a變化時(shí),S不變可知,半徑為100米,速度為50米/分;
①由(1)根據(jù)圖象,第11分時(shí),小明繼續(xù)行走,則小明之前行走9分, 可求出已經(jīng)行走路程,用全程路程減去已走路程即可; ②可求全程時(shí)間為500用時(shí)10分鐘,再加上停留2分鐘即可.
解:(1)由圖象可知,花園半徑為100米,小明速度為100÷2=50米/分, 半圓弧長(zhǎng)為100π=300米,則a=2+=8 ,故答案為:100,50,8.
(2)①由已知,第11分時(shí)小明繼續(xù)前進(jìn),則行進(jìn)時(shí)間為9分鐘,路程為450米,
全程長(zhǎng)100+300+100=500米,則小明離出發(fā)點(diǎn)距離為50米;
②小明返回起點(diǎn)O的時(shí)間為+2=12分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)按如圖方式疊放在一起.
(1)如圖(1)若,求的度數(shù),若,求的度數(shù);
(2)如圖(2)若,求的度數(shù);
(3)猜想與的數(shù)量關(guān)系,并結(jié)合圖(1)說(shuō)明理由;
(4)三角尺不動(dòng),將三角尺的邊與邊重合,然后繞點(diǎn)按順時(shí)針或逆時(shí)針?lè)较蛉我廪D(zhuǎn)動(dòng)一個(gè)角度,當(dāng)()等于多少度時(shí),這兩塊三角尺各有一條邊互相垂直,直接寫(xiě)出角度所有可能的值,不用說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)“蛟龍”號(hào)深潛器目前最大深潛極限為7062.68米。某天該深潛器在海面下1800米處作業(yè)(如圖),測(cè)得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點(diǎn),此時(shí)測(cè)得海底沉船C的俯角為60°.
(1)沉船C是否在“蛟龍”號(hào)深潛極限范圍內(nèi)?并說(shuō)明理由;
(2)由于海流原因,“蛟龍”號(hào)需在B點(diǎn)處馬上上浮,若平均垂直上浮速度為2000米/時(shí),求“蛟龍”號(hào)上浮回到海面的時(shí)間.(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班要在一面墻上同時(shí)展示數(shù)張形狀、大小均相同的矩形繪畫(huà)作品,將這些作品排成一個(gè)矩形(作品不完全重合),現(xiàn)需要在每張作品的四個(gè)角落都釘上圖釘,如果作品有角落相鄰,那么相鄰的角落共享一枚圖釘(例如,用9枚圖釘將4張作品釘在墻上,如圖),若有34枚圖釘可供選用,則最多可以展示繪畫(huà)作品( )
A. 16張 B. 18張 C. 20張 D. 21張
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+4與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.
(1)求△AOB的面積;
(2)過(guò)B點(diǎn)作直線BC與x軸相交于點(diǎn)C,若△ABC的面積是16,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖10,在三角形ABC中,∠ACB>90°.
(1)按下列要求畫(huà)出相應(yīng)的圖形.
①延長(zhǎng)BC至點(diǎn)D,使BD=2BC,連接AD;
②過(guò)點(diǎn)A畫(huà)直線BC的垂線,垂足為點(diǎn)E;
③過(guò)點(diǎn)C畫(huà)CG∥AB,CG與AE交于點(diǎn)F,與AD交于點(diǎn)G;
(2)在(1)所畫(huà)出的圖形中,按要求完成下列問(wèn)題.
①點(diǎn)A、D之間的距離是線段_____的長(zhǎng);點(diǎn)A到線段BC所在的直線的距離是線段___的長(zhǎng),約等于____mm(精確到1mm);
②試說(shuō)明∠ACD=∠B+∠BAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD∥BC,∠1=∠B,∠2=∠3.
(1)試說(shuō)明AB∥DE;
(2)AF與DC的位置關(guān)系如何;為什么;
(3)若∠B=68°,∠C=46°20′,求∠2的度數(shù).
注:本題第(1)、(2)小題在下面的解答過(guò)程的空格內(nèi)填寫(xiě)理由或數(shù)學(xué)式;第(3)小題要寫(xiě)出解題過(guò)程.
解:
(1)∵AD∥BC,(已知)
∴∠1=∠ . ( )
又∵∠1=∠B,(已知)
∴∠B=∠ ,(等量代換)
∴ ∥ . ( )
(2)AF與DC的位置關(guān)系是: .理由如下:
∵AB∥DE,(已知)
∴∠2=∠ . ( )
又∵∠2=∠3,(已知)
∴∠ =∠ .(等量代換)
∴ ∥ . ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABCD的坐標(biāo)分別為A(﹣1,0)、B(0,2)、C(4,2)、D(3,0),點(diǎn)P是AD邊上的一個(gè)動(dòng)點(diǎn),若點(diǎn)A關(guān)于BP的對(duì)稱點(diǎn)為A',則A'C的最小值為( )
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從點(diǎn)A看一山坡上的電線桿PQ,觀測(cè)桿頂端點(diǎn)P的仰角是45°,向前走6 m到達(dá)B點(diǎn),測(cè)得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°,求該電線桿PQ的高度(精確到0.1 m).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com