【題目】如圖,已知,將一個直角三角形紙片()的一個頂點(diǎn)放在點(diǎn)處,現(xiàn)將三角形紙片繞點(diǎn)任意轉(zhuǎn)動,平分斜邊與的夾角,平分.
(1)將三角形紙片繞點(diǎn)轉(zhuǎn)動(三角形紙片始終保持在的內(nèi)部),若,則_______;
(2)將三角形紙片繞點(diǎn)轉(zhuǎn)動(三角形紙片始終保持在的內(nèi)部),若射線恰好平方,若,求的度數(shù);
(3)將三角形紙片繞點(diǎn)從與重合位置逆時針轉(zhuǎn)到與重合的位置,猜想在轉(zhuǎn)動過程中和的數(shù)量關(guān)系?并說明理由.
【答案】(1);(2);(3),證明見解析
【解析】
(1)利用角平分線定義得出,,再利用∠AOB的和差關(guān)系進(jìn)行列方程即可求解;
(2)利用,表達(dá)出∠AOC、∠BOD,利用∠AOB的和差關(guān)系進(jìn)行列方程即可求解;
(3)畫出圖形后利用角的和差關(guān)系進(jìn)行計算求解即可.
解:(1)∵平分斜邊與的夾角,平分.
∴OM平分∠AOC, ON平分∠BOD
∴設(shè)
∴,
∵
∴
∴
故答案為:
(2)∵
∴設(shè)
∵射線恰好平方
∴
∴
∵平分斜邊與的夾角,平分.
∴OM平分∠AOC, ON平分∠BOD
∴
∴
∵
∴
∴
(3) ,證明如下:
當(dāng)OC與OA重合時,設(shè)∠COD=x,則
∵ON平分∠BOD
∴
∴
∴
當(dāng)OC在OA的左側(cè)時
設(shè)∠AOD=a,∠AOC=b,則∠BOD=∠AOB-∠AOD=150°-a,∠COD=∠AOD+∠AOC=a+b
∵ON平分∠BOD
∴
∵OM平分∠AOC
∴
∴∠MON=∠MOA+∠AOD+∠DON
當(dāng)OD與OA重合時
∵ON平分∠AOB
∴
∵OM平分∠AOC
∴
∴
綜上所述
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于點(diǎn)D,BD=3cm,DC=8cm,AD=4cm,動點(diǎn)P從點(diǎn)B出發(fā),沿折線BA﹣AC向終點(diǎn)C做勻速運(yùn)動,點(diǎn)P在線段BA上的運(yùn)動速度是5cm/s;在線段AC上的運(yùn)動速度是cm/s,當(dāng)點(diǎn)P不與點(diǎn)B、C重合時,過點(diǎn)P作PQ⊥BC于點(diǎn)Q,將△PBQ繞PQ的中點(diǎn)旋轉(zhuǎn)180°得到△QB′P,設(shè)四邊形PBQB′與△ABD重疊部分圖形的面積為y(cm2),點(diǎn)P的運(yùn)動時間為x(s).
(1)用含x的代數(shù)式表示線段AP的長.
(2)當(dāng)點(diǎn)P在線段BA上運(yùn)動時,求y與x之間的函數(shù)關(guān)系式.
(3)當(dāng)經(jīng)過點(diǎn)B′和△ADC一個頂點(diǎn)的直線平分△ADC的面積時,直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高,點(diǎn)O是AC中點(diǎn),延長DO到E
使AE∥BC,連接AE。
(1)求證:四邊形ADCE是矩形;
(2)①若AB=17,BC=16,則四邊形ADCE的面積= ;
②若AB=10,則BC= 時,四邊形ADCE是正方形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用三個正方形①、2個正方形②、1個正方形③和缺了一個角的長方形④,恰好拼成一個大長方形.根據(jù)圖示數(shù)據(jù),解答下列問題:
(1)用含x的代數(shù)式表示:a=__________cm,b=__________cm;
(2)用含x的代數(shù)式表示大長方形的周長,并求x=5時大長方形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若,則稱與是關(guān)于的關(guān)聯(lián)數(shù).例如:若,則稱與是關(guān)于2的關(guān)聯(lián)數(shù);
(1)若3與是關(guān)于2的關(guān)聯(lián)數(shù),則_______.
(2)若 與是關(guān)于2的關(guān)聯(lián)數(shù),求的值.
(3)若與是關(guān)于的關(guān)聯(lián)數(shù), ,的值與無關(guān),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).
(1)求拋物線的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線段BC上的一動點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時,在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=ax與反比例函數(shù)y=的圖象交于點(diǎn)A(3,2)
(1)求上述兩函數(shù)的表達(dá)式;
(2)M(m,n)是反比例函數(shù)圖象上的一個動點(diǎn),其中0<m<3,過點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過點(diǎn)A點(diǎn)作直線AC∥y軸交x軸于點(diǎn)C,交直線MB于點(diǎn)D.若s四邊形OADM=6,求點(diǎn)M的坐標(biāo),并判斷線段BM與DM的大小關(guān)系,說明理由;
(3)探索:x軸上是否存在點(diǎn)P.使△OAP是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo); 若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新型節(jié)能環(huán)保汽車油箱中原有汽油100升,汽車每行駛50千米耗油8升,試寫出汽車行駛的路程x(千米)與油箱中剩余油量y(升)之間的函數(shù)關(guān)系式,并畫出這個函數(shù)的圖象,函數(shù)的圖象是什么形狀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌飲水機(jī)廠生產(chǎn)一種飲水機(jī)和飲水機(jī)桶,飲水機(jī)每臺定價350元,飲水機(jī)桶每只定價50元,廠方開展促銷活動期間,可以同時向客戶提供兩種優(yōu)惠方案:
方案一:買一臺飲水機(jī)送一只飲水機(jī)桶;
方案二:飲水機(jī)和飲水機(jī)桶都按定價的90%付款.
現(xiàn)某客戶到該飲水機(jī)廠購買飲水機(jī)30臺,飲水機(jī)桶只(超過30).
(1)若該客戶按方案一購買,求客戶需付款(用含的式子表示);若該客戶按方案二購買,求客戶需付款(用含的式子表示);
(2)若時,通過計算說明此時按哪種方案購買較為合算?
(3)當(dāng)時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,并計算出所需的錢數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com