【題目】嘉嘉在電腦上設計了一個有理數(shù)的運算程序:輸入a,*,再輸入b,得到運算a*b=(a2b2)÷(ab) .

(1)(-2)* * 的值;

(2)琪琪在運用此程序計算時,屏幕上顯示“該程序無法操作”,請你運用所學的數(shù)學知識猜想一下,琪琪在輸入數(shù)據(jù)時,可能出現(xiàn)什么情況?為什么?

【答案】(1)0;(2)琪琪輸入的數(shù)據(jù)可能是ab.

【解析】

(1)原式利用已知的新定義變形,計算即可得到結果;

(2)根據(jù)“該程序無法操作”可以判斷除數(shù)為0,即可得出a=b.

(1)因為(2)*()[(-2)2-()2][(-2)-]=(4-) ;

所以(-2)* () *()=0.

(2)∵屏幕上顯示“該程序無法操作”,只有運算程序中除數(shù)為0,無意義

∴除數(shù)為0,即a-b=0,

ab.

所以當輸入a=b時,屏幕上顯示“該程序無法操作”.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,延長AB至點E,延長CD至點F,使得BE=DF.連接EF,與對角線AC交于點O. 求證:OE=OF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,AB=17,AC=10,BC邊上的高AD=8,則邊BC的長為( )

A. 21 B. 15 C. 9 D. 9或21

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好改善河流的水質,治污公司決定購買10臺污水處理設備現(xiàn)有A,B兩種型號的設備,其中每臺的價格,月處理污水量如下表:經調查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2A型設備比購買3B型設備少6萬元.

A

B

價格萬元

a

b

處理污水量

240

200

ab的值;

治污公司經預算購買污水處理設備的資金不超過105萬元,你認為該公司有哪幾種購買方案;

的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知平行四邊形ABCD的點A0﹣2)、點B3m4m+1)(m≠﹣1),點C62),則對角線BD的最小值是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD相交于點O,OE平分∠AOD,OF平分∠BOD.

(1)若∠AOC=70°,求∠DOE和∠EOF的度數(shù);

(2)請寫出圖中∠AOD的補角和∠AOE的余角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2 為邊長的正方形DEFG的一邊GD在直線AB上,且點D與點A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個單位的速度勻速運動,當點D與點B重合時停止,則在這個運動過程中,正方形DEFG與△ABC的重合部分的面積S與運動時間t之間的函數(shù)關系圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABCD中,點E,F(xiàn)在對角線BD上,且BE=DF,

求證:(1)AE=CF;(2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠ADC的平分線交AB于點E,∠ABC的平分線交CD于點F,求證:四邊形EBFD是平行四邊形.

查看答案和解析>>

同步練習冊答案