【題目】王老師為了解同學(xué)們對金庸武俠小說的閱讀情況,隨機對初三年級的部分同學(xué)進行調(diào)查,將調(diào)查結(jié)果分成以下五類:A:看過0~3本,B:看過4~6本,C:看過7~9本,D:看過10~12本,E:看過13~15本.并根據(jù)調(diào)查結(jié)果繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.
(1)圖2中的a = ,D所對的圓心角度數(shù)為 °;
(2)請補全條形統(tǒng)計圖;
(3)本次調(diào)查中E類有2男1女,王老師想從中抽取2名同學(xué)分別撰寫一篇讀書筆記.請用列表或畫樹狀圖的方法求所抽取的兩名學(xué)生恰好是一男一女的概率.
【答案】(1) 25,54; (2) 12,見解析; (3)
【解析】
(1)用B類學(xué)生的人數(shù)除以所占的百分比求出總?cè)藬?shù),再根據(jù)C類學(xué)生、D類學(xué)生的人數(shù)即可求出所占的百分比,進而求出D所對的圓心角度數(shù).
(2)求出A類學(xué)生的人數(shù),補全條形統(tǒng)計圖即可.
(3)畫樹狀圖求出所有可能的結(jié)果,即可求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
(1)人,
C類學(xué)生所占的百分比為:
D類學(xué)生所占的百分比為:
故答案為:25,54;
(2)A類學(xué)生的人數(shù)為:人.
補全統(tǒng)計圖如圖所示:
(3) 畫樹狀圖如下:
由樹狀圖可知共有6種等可能結(jié)果,其中一男一女的有4種結(jié)果,
∴所選兩位學(xué)生恰好是一位男生和一位女生的概率為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點O在坐標(biāo)原點,邊BO在x軸的負(fù)半軸上,∠BOC=60°,頂點C的坐標(biāo)為(m,3),反比例函數(shù)y=的圖象與菱形對角線AO交于點D,連接BD,當(dāng)BD⊥x軸時,k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的二次函數(shù)y=2sinx2-(4sin+)x-sin+,其中為銳角,則:①當(dāng)a為30°時,函數(shù)有最小值﹣;②函數(shù)圖象與坐標(biāo)軸可能有三個交點,并且當(dāng)a為45°時,連接這三個交點所圍成的三角形面積小于1;③當(dāng)a<60°時,函數(shù)在x>1時,y隨x的增大而增大;④無論銳角a怎么變化,函數(shù)圖象必過定點.其中正確的結(jié)論有( )
A. ①② B. ①②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,過A1、A2、A3、A4、A5…分別作x軸的垂線與反比例函數(shù)y=的圖象交于點P1、P2、P3、P4、P5…,并設(shè)△OA1P1、△A1A2P2、△A2A3P3…面積分別為S1、S2、S3…,按此作法進行下去,則Sn的值為 (n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對電視節(jié)目的喜愛情況,隨機調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目(被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請將兩個統(tǒng)計圖補充完整,并求出新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請估計該校喜愛電視劇節(jié)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,動點P從A點出發(fā),以每秒1個單位長度的速度沿AB向B點運動,同時動點Q從B點出發(fā),以每秒2個單位長度的速度沿BC→CD方向運動,當(dāng)P運動到B點時,P、Q兩點同時停止運動.設(shè)P點運動的時間為t,△APQ的面積為S,則S與t的函數(shù)關(guān)系的圖象是【 】
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在課外學(xué)習(xí)時遇到這樣一個問題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)y=﹣x2+3x﹣2的“旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由函數(shù)y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能確定這個函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請參考小明的方法解決下面問題:
(1)寫出函數(shù)y=﹣x2+3x﹣2的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)y=﹣x2+mx﹣2與y=x2﹣2nx+n互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2015的值;
(3)已知函數(shù)y=﹣(x+1)(x﹣4)的圖象與x軸交于點A、B兩點,與y軸交于點C,點A、B、C關(guān)于原點的對稱點分布是A1,B1,C1,試證明經(jīng)過點A1,B1,C1的二次函數(shù)與函數(shù)y=﹣(x+1)(x﹣4)互為“旋轉(zhuǎn)函數(shù).”
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】剪紙是中國傳統(tǒng)的民間藝術(shù),它畫面精美,風(fēng)格獨特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“金魚”,另外一張卡片的正面圖案為“蝴蝶”,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是“金魚”的概率.(圖案為“金魚”的兩張卡片分別記為A1、A2,圖案為“蝴蝶”的卡片記為B)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com