【題目】已知在平面直角坐標(biāo)中,點(diǎn)在第一象限內(nèi),且,反比例函數(shù)的圖像經(jīng)過點(diǎn),
(1)當(dāng)點(diǎn)的坐標(biāo)為時(shí)(如圖),求這個(gè)反比例函數(shù)的解析式;
(2)當(dāng)點(diǎn)在反比例函數(shù)的圖像上,且在點(diǎn)的右側(cè)時(shí)(如圖2),用含字母的代數(shù)式表示點(diǎn)的坐標(biāo);
(3)在第(2)小題的條件下,求的值。
【答案】(1)(2)(3)
【解析】
(1)過A作AC⊥OB,根據(jù)三角形AOB為等腰直角三角形,得到AC=OC=BC=OB,確定出A坐標(biāo),代入反比例解析式求出k的值,即可確定出反比例解析式;
(2)過A作AE⊥x軸,過B作BD⊥AE,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等,且AO=AB,利用AAS得出三角形AOE與三角形ABD全等,由確定三角形的對(duì)應(yīng)邊相等得到BD=AE=n,AD=OE=m,進(jìn)而表示出ED及OE+BD的長,即可表示出B坐標(biāo);
(3)由A與B都在反比例圖象上,得到A與B橫縱坐標(biāo)乘積相等,列出關(guān)系式,變形后即可求出的值.
解:(1)如圖1,過A作AC⊥OB,交x軸于點(diǎn)C,
∵OA=AB,∠OAB=90°,
∴△AOB為等腰直角三角形,
∴AC=OC=BC=OB=3,
∴A(3,3),
將x=3,y=3代入反比例解析式得:3= ,即k=9,
則反比例解析式為y=;
(2)如圖2,過A作AE⊥x軸,過B作BD⊥AE,
∵∠OAB=90°,
∴∠OAE+∠BAD=90°,
∵∠AOE+∠OAE=90°,
∴∠BAD=∠AOE,
在△AOE和△BAD中,
∴△AOE≌△BAD(AAS),
∴AE=BD=n,OE=AD=m,
∴DE=AE-AD=n-m,OE+BD=m+n,
則B(m+n,n-m);
(3)由A與B都在反比例圖象上,得到mn=(m+n)(n-m),
整理得:n2-m2=mn,即()2+-1=0,
這里a=1,b=1,c=-1,
∵△=1+4=5,
∴= ,
∵A(m,n)在第一象限,
∴m>0,n>0,
則=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:點(diǎn)E是∠AOB的平分線上一點(diǎn),ED⊥OA,EC⊥OB,垂足分別為C、D.
求證:(1)OC=OD;
(2)OE是線段CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,點(diǎn)O是△ABC內(nèi)的一點(diǎn),∠BOC=130°.
(1)由已知條件可知哪兩個(gè)三角形全等__________,理由_________.
(2)求∠DCO的大小.
(3)設(shè)∠AOB=α,那么當(dāng)α為多少度時(shí),△COD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點(diǎn)為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點(diǎn)為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點(diǎn)為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點(diǎn)為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線,交點(diǎn)為En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和點(diǎn)S在平面直角坐標(biāo)系中的位置如圖所示:
(1)將△ABC向右平移4個(gè)單位得到△A1B1C1,則點(diǎn)A1的坐標(biāo)是 ,點(diǎn)B1的坐標(biāo)是 ;
(2)將△ABC繞點(diǎn)S按順時(shí)針方向旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(-1,0),點(diǎn)B(3,0)和點(diǎn)C(0,3).
(1)求拋物線的解析式和頂點(diǎn)E的坐標(biāo);
(2)點(diǎn)C是否在以BE為直徑的圓上?請(qǐng)說明理由;
(3)點(diǎn)Q是拋物線對(duì)稱軸上一動(dòng)點(diǎn),點(diǎn)R是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)Q、R,使以Q、R、C、B為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)Q、R的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生的體能狀況,某學(xué)校從七年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生的體能測(cè)試結(jié)果進(jìn)行分析,并根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)這兩幅統(tǒng)計(jì)圖中的信息回答下列問題:(測(cè)試結(jié)果分“優(yōu)秀”、“良好”、“及格”、“不及格”四個(gè)等級(jí))
(1)本次抽樣調(diào)查共抽取多少名學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)在扇形統(tǒng)計(jì)圖中,求測(cè)試結(jié)果為“良好”等級(jí)所對(duì)應(yīng)圓心角的度數(shù).
(4)若該學(xué)校七年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)該學(xué)校七年級(jí)學(xué)生中測(cè)試結(jié)果為“不及格”等級(jí)的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把圖中陰影部分的小正方形移動(dòng)一個(gè),使它與其余四個(gè)陰影部分的正方形組成一個(gè)既是軸對(duì)稱又是中心對(duì)稱的新圖形,這樣的移法,正確的是( 。
A. 6→3 B. 7→16 C. 7→8 D. 6→15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com