【題目】如圖,在△ABC中,AD平分∠BAC交BC于點(diǎn)D,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,∠MDN的兩邊分別與AB,AC相交于M,N兩點(diǎn),且∠MDN+∠BAC=180°.
(1)求證AE=AF;
(2)若AD=6,DF=2,求四邊形AMDN的面積.
【答案】(1)詳見(jiàn)解析;(2)
【解析】
(1)依據(jù)HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;
(2)判定△DEM≌△DFN,可得S△DEM=S△DFN,進(jìn)而得到S四邊形AMDN=S四邊形AEDF,求得S△ADF=AF×DF=2,即可得出結(jié)論.
(1)∵AD平分∠BAC,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,
∴DE=DF,
又∵DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,
∴∠AED=∠AFD=90°,
又∵AD=AD,
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF;
(2)∵∠MDN+∠BAC=180°,
∴∠AMD+∠AND=180°,
又∵∠DNF+∠AND=180°
∴∠EMD=∠FND,
又∵∠DEM=∠DFN,DE=DF,
∴△DEM≌△DFN,
∴S△DEM=S△DFN,
∴S四邊形AMDN=S四邊形AEDF,
∵AD=6,DF=2 ,
∴Rt△ADF中,AF=
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90,AC=BC,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α角(0<α<90)得到△A1B1C,連結(jié)BB1.設(shè)CB1交AB于D,A1B1分別交AB、AC于E、F,
(1)在圖中不再添加其它任何線段的情況下,請(qǐng)你找出一對(duì)全等的三角形,并加以證明(△ABC與△A1B1C全等除外);
(2)當(dāng)△BB1D是等腰三角形時(shí),求α.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)E處,連接DE交AB于點(diǎn)F,當(dāng)△DEB是直角三角形時(shí),DF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了對(duì)一棵傾斜的古杉樹(shù)AB進(jìn)行保護(hù),需測(cè)量其長(zhǎng)度.如圖,在地面上選取一點(diǎn)C,測(cè)得∠ACB=45°,AC=24m,∠BAC=66.5°,求這棵古杉樹(shù)AB的長(zhǎng)度.(結(jié)果取整數(shù))
參考數(shù)據(jù):≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(2,2),對(duì)稱軸是直線x=1,頂點(diǎn)為B.
(1)求這條拋物線的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)點(diǎn)M在對(duì)稱軸上,且位于頂點(diǎn)上方,設(shè)它的縱坐標(biāo)為m,聯(lián)結(jié)AM,用含m的代數(shù)式表示∠AMB的余切值;
(3)將該拋物線向上或向下平移,使得新拋物線的頂點(diǎn)C在x軸上.原拋物線上一點(diǎn)P平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,如果OP=OQ,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AT是經(jīng)過(guò)點(diǎn)A的切線,弦CD垂直AB于P點(diǎn),Q為線段CP的中點(diǎn),連接BQ并延長(zhǎng)交切線AT于T點(diǎn),連接OT.
(1)求證:BC∥OT;
(2)若⊙O直徑為10,CD=8,求AT的長(zhǎng);
(3)延長(zhǎng)TO交直線CD于R,若⊙O直徑為10,CD=8,求TR的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)A、B、O在數(shù)軸上對(duì)應(yīng)的數(shù)為a、b、0,且滿足|a+8|+(b﹣12)2=0,點(diǎn)M、N分別從O、B出發(fā),同時(shí)向左勻速運(yùn)動(dòng),M的速度為1個(gè)單位長(zhǎng)度每秒,N的速度為3個(gè)單位長(zhǎng)度每秒,A、B之間的距離定義為:AB=|a﹣b|.
(1)直接寫出OA= .OB= ;
(2)設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),恰好有AN=2AM;
(3)若點(diǎn)P為線段AM的中點(diǎn),Q為線段BN的中點(diǎn),M、N在運(yùn)動(dòng)的過(guò)程中,PQ+MN的長(zhǎng)度是否發(fā)生變化?若不變,請(qǐng)說(shuō)明理由,若變化,當(dāng)t為何值時(shí),PQ+MN有最小值?最小值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com