【題目】某商店以40元/千克的進(jìn)價購進(jìn)一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量y(千克)與銷售價x(元/千克)成一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)若該商店銷售這批茶葉的成本不超過2800元,則它的最低銷售價應(yīng)定為多少元?
【答案】
(1)解:設(shè)y與x的函數(shù)關(guān)系式為y=kx+b,
將(40,160),(120,0)代入,
得 ,解得 ,
即y與x的函數(shù)關(guān)系式為y=﹣2x+240;
(2)解:設(shè)銷售量為y千克,
40y≤2800,
解得,y≤70,
∴﹣2x+240≤70,
解得,x≥85,
即它的最低銷售價應(yīng)定為85元.
【解析】(1)根據(jù)圖象可設(shè)y=kx+b,將(40,160),(120,0)代入,得到關(guān)于k、b的二元一次方程組,解方程組即可;(2)根據(jù)該商店銷售這批茶葉的成本不超過2800元,即可得到關(guān)于y的不等式,從而可以求得y的取值范圍,進(jìn)而求得它的最低銷售價應(yīng)定為多少元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數(shù)根.
(1)求m的取值范圍;
(2)若m為正整數(shù),求此方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個結(jié)論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結(jié)論正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn)A(2,4)和B(﹣1,﹣5)兩點(diǎn).
(1)求出該一次函數(shù)的表達(dá)式;
(2)判斷(﹣4,3)是否在這個函數(shù)的圖象上?
(3)求出該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo)以及與坐標(biāo)軸圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大。
閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性質(zhì))
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計算:(﹣2ab)2+a2(a+2b)(a﹣2b)+a8÷a2
(2)解方程:
(3)先化簡,再求值:÷,其中x=﹣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo).經(jīng)測算:甲隊單獨(dú)完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙隊單獨(dú)完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨(dú)完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列推理過程:
已知:如圖,∠1+∠2=180°,∠3=∠B
求證:∠EDG+∠DGC=180°
證明:∵∠1+∠2=180°(已知)
∠1+∠DFE=180°( )
∴∠2= ( )
∴EF∥AB( )
∴∠3= ( )
又∵∠3=∠B(已知)
∴∠B=∠ADE( )
∴DE∥BC( )
∴∠EDG+∠DGC=180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF平分∠COE.∠AOC=∠COB,則∠BOF=_____°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com