【題目】如圖,直線(xiàn)x軸、y軸分別交于點(diǎn)A,B,另一直線(xiàn)x軸、y軸分別交于點(diǎn)C,D,兩直線(xiàn)相交于點(diǎn)M

求點(diǎn)M的坐標(biāo);

連接AD,求△AMD的面積.

【答案】(1)點(diǎn)M的坐標(biāo)(1,2);(2)SAMD2.

【解析】

1y=-x+3y=x+1組成方程組,即可求出M的坐標(biāo);

2)通過(guò)一次函數(shù)求出AB,C,D四點(diǎn)的坐標(biāo),SAMD=SAMC-SACD就可求出面積.

(1)由,解得

故點(diǎn)M的坐標(biāo)(1,2);

(2)∵直線(xiàn)y=﹣x+3x軸、y軸分別交于點(diǎn)A,B,另一直線(xiàn)yx+1x軸、y軸分別交于點(diǎn)CD,

A(3,0),B(0,3)C(-1,0),D(0,1)AC4,

SAMDSAMCSACD2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把兩個(gè)含有45°角的大小不同的直角三角板如圖放置,點(diǎn)DBC上,連接BE,ADAD的延長(zhǎng)線(xiàn)交BE于點(diǎn)F.求證:AF⊥BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】人民商場(chǎng)銷(xiāo)售某種冰箱,每臺(tái)進(jìn)價(jià)為2500元,市場(chǎng)調(diào)研表明:當(dāng)每臺(tái)銷(xiāo)售價(jià)定為2900元時(shí),平均每天能售出8臺(tái);每臺(tái)售價(jià)每降低50元,平均每天能多售出4臺(tái).
設(shè)該種冰箱每臺(tái)的銷(xiāo)售價(jià)降低了x元.
(1)填表:

每天售出的冰箱臺(tái)數(shù)(臺(tái))

每臺(tái)冰箱的利潤(rùn)(元)

降價(jià)前

8

降價(jià)后


(2)若商場(chǎng)要想使這種冰箱的銷(xiāo)售利潤(rùn)平均每天達(dá)到5000元,則每臺(tái)冰箱的售價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游泳館普通票價(jià)20/,暑假為了促銷(xiāo)新推出兩種優(yōu)惠卡

金卡售價(jià)600/,每次憑卡不再收費(fèi)

銀卡售價(jià)150/,每次憑卡另收10

暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時(shí),所需總費(fèi)用為y

(1)分別寫(xiě)出選擇銀卡、普通票消費(fèi)時(shí),yx之間的函數(shù)關(guān)系式;

(2)在同一坐標(biāo)系中若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示,請(qǐng)求出點(diǎn)A、B、C的坐標(biāo)

(3)請(qǐng)根據(jù)函數(shù)圖象,直接寫(xiě)出選擇哪種消費(fèi)方式更合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣4,n),B4n,﹣4)是直線(xiàn)ykx+b和雙曲線(xiàn)y的兩個(gè)交點(diǎn).

1)求兩個(gè)函數(shù)的表達(dá)式;

2)觀察圖象,直接寫(xiě)出不等式kx+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)y=x2+bx的圖象的對(duì)稱(chēng)軸是經(jīng)過(guò)點(diǎn)(2,0)且平行于y軸的直線(xiàn),則關(guān)于x的方程x2+bx=5的解為( )
A.x1=0,x2=4
B.x1=1,x2=5
C.x1=1,x2=﹣5
D.x1=﹣1,x2=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,BAy軸于點(diǎn)A,BCx軸于點(diǎn)C,函數(shù)y=﹣x0)的圖象分別交BA、BC于點(diǎn)D、E,當(dāng)BD3AD,且△BDE的面積為18時(shí),則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=﹣2x+4分別交x軸、y軸于點(diǎn)A、B,將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△AOB′.

1)求直線(xiàn)AB′所對(duì)應(yīng)的函數(shù)表達(dá)式.

2)若直線(xiàn)AB′與直線(xiàn)AB相交于點(diǎn)C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是長(zhǎng)方形, A=B=C=D=90°ABCD,AB=CD=4,AD=BC=6,點(diǎn)A的坐標(biāo)為(3,2).動(dòng)點(diǎn)P的運(yùn)動(dòng)速度為每秒a個(gè)單位長(zhǎng)度,動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度為每秒b個(gè)單位長(zhǎng)度,且.設(shè)運(yùn)動(dòng)時(shí)間為t,動(dòng)點(diǎn)P、Q相遇則停止運(yùn)動(dòng).

(1) a,b的值;

(2) 動(dòng)點(diǎn)P,Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P沿長(zhǎng)方形ABCD的邊界逆時(shí)針?lè)较蜻\(yùn)動(dòng),點(diǎn)Q沿長(zhǎng)方形ABCD的邊界順時(shí)針?lè)较蜻\(yùn)動(dòng),當(dāng)t為何值時(shí)PQ兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo);

(3) 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D出發(fā):

①若點(diǎn)P、Q均沿長(zhǎng)方形ABCD的邊界順時(shí)針?lè)较蜻\(yùn)動(dòng),t為何值時(shí),P、Q兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo);

②若點(diǎn)P、Q均沿長(zhǎng)方形ABCD的邊界逆時(shí)針?lè)较蜻\(yùn)動(dòng),t為何值時(shí),PQ兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案