【題目】如圖,數(shù)軸上A、B兩點(diǎn)表示的數(shù)分別為a、b,且a、b滿足|a2|(b8)20,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0

(1) 線段AB的中點(diǎn)表示的數(shù)為___________

用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為___________

(2) 求當(dāng)t為何值時(shí),PQAB

(3) 若點(diǎn)MPA的中點(diǎn),點(diǎn)NPB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出線段MN的長(zhǎng).

【答案】1)①3;②-2+3t;(2)當(dāng)t=13時(shí),PQ=AB;(3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段MN的長(zhǎng)度不發(fā)生變化,線段MN的長(zhǎng)為5個(gè)單位長(zhǎng)度.

【解析】

1)①根據(jù)非負(fù)數(shù)的性質(zhì)可求a、b,再根據(jù)中點(diǎn)坐標(biāo)公式即可求解;
②根據(jù)題意,可以用含t的代數(shù)式表示出點(diǎn)P;
2)由t秒后,點(diǎn)P表示的數(shù)-2+3t,點(diǎn)Q表示的數(shù)為8-2t,于是得到PQ=|-2+3t-8-2t|=|5t-10|,列方程即可得到結(jié)論;
3)根據(jù)題意可以表示出點(diǎn)M表示的數(shù)為=,點(diǎn)N表示的數(shù)為 =,即可得到結(jié)論.

解:(1)∵|a2|(b8)20
a+2=0,b-8=0,
解得a=-2b=8,
線段AB的中點(diǎn)表示的數(shù)為(-2+8÷2=3;
t秒后,點(diǎn)P表示的數(shù)為-2+3t;
2)∵t秒后,點(diǎn)P表示的數(shù)-2+3t,點(diǎn)Q表示的數(shù)為8-2t,
PQ=|-2+3t-8-2t|=|5t-10|,
又∵PQ=AB=×[8--2]= ×10=5
|5t-10|=5,
解得:t=13
∴當(dāng)t=13時(shí),PQ=AB;
3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段MN的長(zhǎng)度不發(fā)生變化,
理由如下:∵點(diǎn)M表示的數(shù)為:=,
點(diǎn)N表示的數(shù)為: =
MN= =5,
∴點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段MN的長(zhǎng)度不發(fā)生變化,線段MN的長(zhǎng)為5個(gè)單位長(zhǎng)度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、bcABC的內(nèi)角A、B、C所對(duì)應(yīng)的邊,滿足下列條件的三角形不是直角三角形的是

A. C=ABB. a:b:c = 1 : :

C. A∶∠B∶∠C543D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y=的圖象如圖所示,則一元二次方程x2-(2k-1)x+k2-1=0根的情況是( )

A. 沒(méi)有實(shí)根 B. 有兩個(gè)不等實(shí)根 C. 有兩個(gè)相等實(shí)根 D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在一條直線上選了若干個(gè)點(diǎn),通過(guò)數(shù)線段的條數(shù),發(fā)現(xiàn)其中蘊(yùn)含了一定的規(guī)律,下邊是他的探究過(guò)程及聯(lián)想到的一些相關(guān)實(shí)際問(wèn)題.

1)一條直線上有2個(gè)點(diǎn),線段共有1條;一條直線上有3個(gè)點(diǎn),線段共有1+2=3條;一條直線上有4個(gè)點(diǎn),線段共有1+2+3=6一條直線上有10個(gè)點(diǎn),線段共有 .

2)總結(jié)規(guī)律:一條直線上有n個(gè)點(diǎn),線段共有 .

3)拓展探究:具有公共端點(diǎn)的兩條射線OA、OB形成1個(gè)角∠AOB∠AOB180°);在∠AOB內(nèi)部再加一條射線OC,此時(shí)具有公共端點(diǎn)的三條射線OA、OB、OC共形成3個(gè)角;以此類推,具有公共端點(diǎn)的n條射線OA、OBOC…共形成 個(gè)角

4)解決問(wèn)題:曲沃縣某學(xué)校九年級(jí)1班有45名學(xué)生畢業(yè)留影時(shí),全體同學(xué)拍1張集體照,每2名學(xué)生拍1張兩人照,共拍了多少?gòu)堈掌?如果照片上的每位同學(xué)都需要1張照片留作紀(jì)念,又應(yīng)該沖印多少?gòu)埣堎|(zhì)照片?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過(guò)或不足的千克數(shù)分別用正.負(fù)數(shù)來(lái)表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差值

(單位:千克)

4

2

1.5

0

1

2.5

筐數(shù)

1

2

1

2

1

3

110筐白菜中,最重的一筐比最輕的一筐多重多少千克?

2)與標(biāo)準(zhǔn)重量比較,10筐白菜總計(jì)超過(guò)或不足多少千克?

3)若白菜每千克售價(jià)2.5元,則出售這10筐白菜可賣多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黑螞蟻沿著大半圓從A地爬到B地,白螞蟻沿著兩個(gè)小半圓弧路線也從A地爬到B地.它們同時(shí)從A地出發(fā),讓人奇怪的是,兩只螞蟻同時(shí)爬到B地.假設(shè)ABa

1)請(qǐng)你幫忙裁決,兩只螞蟻誰(shuí)爬得快?

2)兩只螞蟻對(duì)你的裁決很不滿意,決定到圖2中的比賽場(chǎng)地再比一次,依然黑螞蟻沿著大半圓爬,白螞蟻沿著小半圓爬,同時(shí)從A地出發(fā),那么請(qǐng)問(wèn)哪只螞蟻先爬到B地?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王購(gòu)買了一套一居室,他準(zhǔn)備將房子的地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中所給的數(shù)據(jù)(單位:米),解答下列問(wèn)題:

(1)用含 的代數(shù)式表示地面的總面積 ;

(2)已知 ,且客廳面積是衛(wèi)生間面積的 倍,如果鋪 平方米地磚的平均費(fèi)用為 元,那么小王鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=kx+bx軸于點(diǎn)A,交y軸于點(diǎn)B,直線y=2x﹣4x軸于點(diǎn)D,與直線AB相交于點(diǎn)C(3,2).

(1)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>x+b的解集;

(2)若點(diǎn)A的坐標(biāo)為(5,0),求直線AB的解析式;

(3)在(2)的條件下,求四邊形BODC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-3x+c=0有兩個(gè)實(shí)數(shù)根.

1)求c的取值范圍;

2)若c為正整數(shù),取符合條件的c的一個(gè)值,并求出此時(shí)原方程的根.

查看答案和解析>>

同步練習(xí)冊(cè)答案