【題目】二次函數(shù)y=ax2+bx+c圖象如圖,下列正確的個數(shù)為( )
①bc>0;
②2a-3c<0;
③2a+b>0;
④ax2+bx+c=0有兩個解x1,x2,當x1>x2時,x1>0,x2<0;
⑤a+b+c>0;
⑥當x>1時,y隨x增大而減。
A.2 B.3 C.4 D.5
【答案】B.
【解析】
試題解析:①∵拋物線開口向上,
∴a>0,
∵對稱軸在y軸右側(cè),
∴a,b異號即b<0,
∵拋物線與y軸的交點在負半軸,
∴c<0,
∴bc>0,故①正確;
②∵a>0,c<0,
∴2a-3c>0,故②錯誤;
③∵對稱軸x=-<1,a>0,
∴-b<2a,
∴2a+b>0,故③正確;
④由圖形可知二次函數(shù)y=ax2+bx+c與x軸的兩個交點分別在原點的左右兩側(cè),
即方程ax2+bx+c=0有兩個解x1,x2,當x1>x2時,x1>0,x2<0,故④正確;
⑤由圖形可知x=1時,y=a+b+c<0,故⑤錯誤;
⑥∵a>0,對稱軸x=1,
∴當x>1時,y隨x增大而增大,故⑥錯誤.
綜上所述,正確的結(jié)論是①③④,共3個.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E. F.
(1)求證:△BCF≌△BA1D.
(2)當∠C=α度時,判定四邊形A1BCE的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,已知點A (1,2),B (-2, 2), C (-2, -2), D (1 ,-2), 把一根長為2017個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A→D→C→B→A……的順序緊繞在四邊形ABCD的邊上,則細線的另一端所在位置的點的坐標是 ( )
A. (1, 2 ) B. ( 0, 2 ) C. (1,1) D. (1 ,-2 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,動點P在線段BC上以每秒2個單位長的速度由點C向B 運動.設(shè) 動點P的運動時間為t秒
(1)當t為何值時,四邊形PODB是平行四邊形?
(2)在直線CB上是否存在一點Q,使得O、D、Q、P四點為頂點的四邊形是菱形?若存在,求t的值,并求出Q點的坐標;若不存在,請說明理由。
(3) 在線段PB上有一點M,且PM=5,當P運動 秒時,四邊形OAMP的周長最小, 并畫圖標出點M的位置。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A 籃球 B 乒乓球C 羽毛球 D 足球,為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有 人;
(2)請你將條形統(tǒng)計圖(2)補充完整;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件中,不能判定四邊形是平行四邊形的是( )
A. 對角線互相平分B. 兩組對邊分別相等
C. 對角線互相垂直D. 一組對邊平行,一組對角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明的作業(yè)本上有四道題:(1)a·a=a,(2)(2b)=8b,(3)-(x+1)=x+1,(4)4a÷(-2a)=-2a,如果你是他的數(shù)學(xué)老師,請找出他做錯的題是( )
A.(1) B.(2) C.(3) D.(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列哪一個是假命題( 。
A. 五邊形外角和為360°
B. 切線垂直于經(jīng)過切點的半徑
C. (3,﹣2)關(guān)于y軸的對稱點為(﹣3,2)
D. 拋物線y=x2﹣4x+2017對稱軸為直線x=2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com