【題目】如圖,在矩形ABCD中,AB=10cm,AD=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB以2cm/s的速度向點(diǎn)終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BC以1cm/s的速度向點(diǎn)終點(diǎn)C運(yùn)動(dòng),它們到達(dá)終點(diǎn)后停止運(yùn)動(dòng).

(1)幾秒后,點(diǎn)P、D的距離是點(diǎn)P、Q的距離的2倍;

(2)幾秒后,△DPQ的面積是24cm2.

【答案】(1)3;(2)4.

【解析】【試題分析】(1)設(shè)t秒后點(diǎn)P、D的距離是點(diǎn)PQ距離的2倍,PD=2PQ

因?yàn)樗倪呅?/span>ABCD是矩形,根據(jù)矩形的性質(zhì)得,A=∠B=90°利用勾股定理得:PD2=AP2+AD2 ,PQ2=BP2+BQ2由于PD2=4 PQ2,即82+(2t)2=4[(10-2t)2+t2],

解得:t1=3,t2=7(舍去),即t=3;

(2) 設(shè)x秒后DPQ的面積是24cm2,根據(jù)矩形的面積等于三個(gè)直角三角形的面積加上24,

x1=x2=4,4秒后,△DPQ的面積是24cm2.

【試題解析】

(1)設(shè)t秒后點(diǎn)PD的距離是點(diǎn)P、Q距離的2倍,

PD=2PQ

∵四邊形ABCD是矩形

∴∠A=∠B=90°

PD2=AP2+AD2 ,PQ2=BP2+BQ2

PD2=4 PQ2,∴82+(2t)2=4[(10-2t)2+t2],

解得:t1=3,t2=7;

t=7時(shí)10-2t<0,∴t=3

(2) 設(shè)x秒后DPQ的面積是24cm2,

整理得x2-8x+16=0

解得x1=x2=4

4秒后,△DPQ的面積是24cm2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是9×7的正方形點(diǎn)陣,其水平方向和豎起直方向的兩格點(diǎn)間的長(zhǎng)度都為1個(gè)單位,以這些點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形.請(qǐng)通過(guò)畫圖分析、探究回答下列問(wèn)題:

(1)請(qǐng)?jiān)趫D中畫出以AB為邊且面積為2的一個(gè)網(wǎng)格三角形;

(2)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以AB、M為頂點(diǎn)的三角形的面積為2的概率;

(3)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以AB、M為頂點(diǎn)的三角形為直角三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠ABCBCD的平分線BE、CF分別與AD相交于點(diǎn)EF,BECF相交于點(diǎn)G.

(1)求證:BECF;

(2)AB3BC5,CF2,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A﹣2,4),B﹣2,1),C﹣5,2).

1)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1

2)將△A1B1C1的三個(gè)頂點(diǎn)的橫坐標(biāo)與縱坐標(biāo)同時(shí)乘以﹣2,得到對(duì)應(yīng)的點(diǎn)A2,B2,C2,請(qǐng)畫出△A2B2C2

3)求△A1B1C1△A2B2C2的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)先閱讀,再填空:

(x5)(x6)x211x30;

(x5)(x6)x211x30;

(x5)(x6)x2x30

(x5)(x6)x2x30.

觀察上面的算式,根據(jù)規(guī)律,直接寫出下列各式的結(jié)果:

(a90)(a100)____________; (y80)(y90)____________

2)先閱讀,再填空:

;

.

觀察上面各式:由此歸納出一般性規(guī)律:

________;

根據(jù)直接寫出1+3+32+…+367+368的結(jié)果 ____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,它的三邊長(zhǎng)是三個(gè)連續(xù)的正偶數(shù),且ACBC.

(1)這個(gè)直角三角形的各邊長(zhǎng);

(2)若動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以1個(gè)單位長(zhǎng)度/秒的速度運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),請(qǐng)運(yùn)用尺規(guī)作圖作出以點(diǎn)Q為圓心,QC為半徑,且與AB邊相切的圓,并求出此時(shí)點(diǎn)Q的運(yùn)動(dòng)時(shí)間.

(3) 若動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以1個(gè)單位長(zhǎng)度/秒的速度運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),以Q為圓心、QC長(zhǎng)為半徑作圓,請(qǐng)?zhí)骄奎c(diǎn)Q在整個(gè)運(yùn)動(dòng)過(guò)程中,運(yùn)動(dòng)時(shí)間t為怎樣的值時(shí),⊙Q與邊AB分別有0個(gè)公共點(diǎn)、1個(gè)公共點(diǎn)和2個(gè)公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABDE,求證:∠DBCDB180°.

證明:過(guò)點(diǎn)CCFAB.

ABCF(已知)

∴∠B________(____________________)

ABDE,CFAB(已知)

CFDE(__________________________________)

∴∠2________180°(________________________)

∵∠2BCD________(已知),

∴∠DBCDB180°(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從二次函數(shù)y=ax2+bx+c的圖象(如圖)中觀察

得出了下面五條信息:c0;②abc0;③a-b+c0;④2a-3b=0;⑤c-4b0.

你認(rèn)為其中正確的信息是_________________.(只填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案