【題目】如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)x軸于,,在y軸上有一點(diǎn),連接AE

求二次函數(shù)的表達(dá)式;

點(diǎn)D是第二象限內(nèi)的拋物線上一動(dòng)點(diǎn).

①求面積最大值并寫出此時(shí)點(diǎn)D的坐標(biāo);

②若,求此時(shí)點(diǎn)D坐標(biāo);

【答案】(1);(2)①D(,);②

【解析】

(1)A(4,0)B(2,0)代入y=ax2+bx+6(a≠0),求得;
(2)①由已知可求:,AE的直線解析式,設(shè),過點(diǎn)DAE垂直的直線解析式為,兩直線的交點(diǎn)為,可求,則有當(dāng)時(shí),DQ最大為,則面積最大值為;
②過點(diǎn)AANDE,DEx中交于點(diǎn)F,由tanAED=,可求AN=NE=3,因?yàn)?/span>RtAFNRtEFO,,則有,所以F(2,0),得到EF直線解析式為y=x2,直線與拋物線的交點(diǎn)為D點(diǎn).

解:,代入

可得,,

;

,

AE的直線解析式,

設(shè),

過點(diǎn)DAE垂直的直線解析式為,

兩直線的交點(diǎn)為,

當(dāng)時(shí),DQ最大為

;

過點(diǎn)A,DEx軸交于點(diǎn)F,

,

,

,

,

,

,

,

直線解析式為,

時(shí),,

;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線Lyax2+bx+ca0)的對(duì)稱軸為x5,且與x軸的左交點(diǎn)為(1,0),則下列說法正確的有(

C(90);②b+c>﹣10;③y的最大值為﹣16a;④若該拋物線與直線y8有公共交點(diǎn),則a的取值范圍是a≤

A.①②③④B.①②③C.①③④D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB2,AD4,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至矩形EGCF(其中E、G、F分別與AB、D對(duì)應(yīng)).

1)如圖1,當(dāng)點(diǎn)G落在AD邊上時(shí),直接寫出AG的長為   ;

2)如圖2,當(dāng)點(diǎn)G落在線段AE上時(shí),ADCG交于點(diǎn)H,求GH的長;

3)如圖3,記O為矩形ABCD對(duì)角線的交點(diǎn),S為△OGE的面積,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,對(duì)角線AC、BD交于O點(diǎn),DE∥AC,CE∥BD

1)求證:四邊形OCED為矩形;

2)在BC上截取CFCO,連接OF,若AC16,BD12,求四邊形OFCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BOx軸的負(fù)半軸上,,頂點(diǎn)C的坐標(biāo)為,x反比例函數(shù)的圖象與菱形對(duì)角線AO交于點(diǎn)D,連接BD,當(dāng)軸時(shí),k的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時(shí)間為標(biāo)準(zhǔn)分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計(jì)圖(圖都不完整).

請(qǐng)根據(jù)以上信息,解答下列問題:

(1)該汽車交易市場去年共交易二手轎車   輛.

(2)把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整.(畫圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù))

(3)在扇形統(tǒng)計(jì)圖中,D類二手轎車交易輛數(shù)所對(duì)應(yīng)扇形的圓心角為   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,3個(gè)正方形在⊙O直徑的同側(cè),頂點(diǎn)BC、G、H都在⊙O的直徑上,正方形ABCD的頂點(diǎn)A在⊙O上,頂點(diǎn)DPC上,正方形EFGH的頂點(diǎn)E在⊙O上、頂點(diǎn)FQG上,正方形PCGQ的頂點(diǎn)P也在⊙O上.若BC=1,GH=2,則CG的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過點(diǎn)B(﹣2,0)的直線ykx+b與直線y4x+2相交于點(diǎn)A(﹣1,﹣2),4x+2kx+b0的解集為( 。

A.x<﹣2B.2x<﹣1C.x<﹣1D.x>﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在炎熱的夏季,遮陽傘在我們的生活中隨處可見.如圖①,滑動(dòng)調(diào)節(jié)式遮陽傘的立柱直于地面,點(diǎn)為立柱上的滑動(dòng)調(diào)節(jié)點(diǎn),傘體的截面示意圖為,中點(diǎn),,,.當(dāng)點(diǎn)位于初始位置時(shí),點(diǎn)重合(如圖②).根據(jù)生活經(jīng)驗(yàn),當(dāng)太陽光線與垂直時(shí),遮陽效果最佳.已知太陽光線與地面的夾角為(如圖③),為使遮陽效果最佳,點(diǎn)需從上調(diào)多少米?(結(jié)果精確到)(參考數(shù)據(jù):,,

查看答案和解析>>

同步練習(xí)冊(cè)答案