【題目】已知,在菱形ABCD中,G是射線(xiàn)BC上的一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),連接AG,點(diǎn)E、F是AG上兩點(diǎn),連接DE,BF,且知∠ABF=∠AGB,∠AED=∠ABC.
(1)若點(diǎn)G在邊BC上,如圖1,則:
①△ADE與△BAF______;(填“全等”或“不全等”或“不一定全等”)
②線(xiàn)段DE、BF、EF之間的數(shù)量關(guān)系是______;
(2)若點(diǎn)G在邊BC的延長(zhǎng)線(xiàn)上,如圖2,那么上面(1)②探究的結(jié)論還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明這三條線(xiàn)段之間又怎樣的數(shù)量關(guān)系,并給出你的證明.
【答案】(1)①全等;②DE=BF+EF;(2)DE=BF-EF,見(jiàn)解析
【解析】
(1)①根據(jù)菱形的性質(zhì)得到AB=AD,AD∥BC,由平行線(xiàn)的性質(zhì)得到∠BGA=∠DAE,等量代換得到∠BAF=∠ADE,求得∠ABF=∠DAE,根據(jù)全等三角形的判定定理即可得到結(jié)論;
②根據(jù)全等三角形的性質(zhì)得到AE=BF,DE=AF,根據(jù)線(xiàn)段的和差即可得到結(jié)論.
(2)與(1)同理證△ABF≌△DAE得AE=BF,DE=AF,由AF=AE-EF=BF-EF可得答案.
(1)①∵四邊形ABCD是菱形,
∴AB=AD,AD∥BC,
∴∠BGA=∠DAE,
∵∠ABC=∠AED,
∴∠BAF=180-∠ABC -∠BGA =180-∠AED -∠DAE =∠ADE,
∵∠ABF=∠BGF,∠BGA=∠DAE,
∴∠ABF=∠DAE,
∵AB=DA,
∴△ABF≌△DAE(ASA);
②∵△ABF≌△DAE,
∴AE=BF,DE=AF,
∵AF=AE+EF=BF+EF,
∴DE=BF+EF.
故答案為:全等,DE=BF+EF;
(2)DE=BF-EF,
如圖,
∵四邊形ABCD是菱形,
∴AB=AD,AD∥BC,
∴∠BGA=∠DAE,
∵∠ABC=∠AED,
∴∠BAF=180-∠ABC -∠BGA =180-∠AED -∠DAE =∠ADE,
∵∠ABF=∠BGF,∠BGA=∠DAE,
∴∠ABF=∠DAE,
∵AB=DA,
∴△ABF≌△DAE(ASA);
∴AE=BF,DE=AF,
∵AF=AE-EF=BF-EF,
則DE=BF-EF
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=4,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至△A′B′C,使得點(diǎn)A′恰好落在AB上,則旋轉(zhuǎn)角度為( )
A.30°B.60°C.90°D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=x2+bx+c的對(duì)稱(chēng)軸為直線(xiàn)x=1,拋物線(xiàn)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且AB=4,又P是拋物線(xiàn)上位于第一象限的點(diǎn),直線(xiàn)AP與y軸交于點(diǎn)D,與對(duì)稱(chēng)軸交于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t.
(1)求點(diǎn)A的坐標(biāo)和拋物線(xiàn)的表達(dá)式;
(2)當(dāng)AE:EP=1:2時(shí),求點(diǎn)E的坐標(biāo);
(3)記拋物線(xiàn)的頂點(diǎn)為M,與y軸的交點(diǎn)為C,當(dāng)四邊形CDEM是等腰梯形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)l為y=x,過(guò)點(diǎn)A1(1,0)作A1B1⊥x軸,與直線(xiàn)l交于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2,再作A2B2⊥x軸,交直線(xiàn)l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A3…按照這樣的作法進(jìn)行下去,則點(diǎn)A20的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里裝有黑、白兩種顏色的球共30只,這些球除顏色外其余完全相同.?dāng)噭蚝螅∶髯雒驅(qū)嶒?yàn),他從盒子里隨機(jī)摸出一只球記下顏色后,再把球放回盒子中,不斷重復(fù)上述過(guò)程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù).
(1)若從盒子里隨機(jī)摸出一只球,則摸到白球的概率的估計(jì)值為 (精確到0.1)
(2)盒子里白色的球有 只;
(3)若將m個(gè)完全一樣的白球放入這個(gè)盒子里并搖勻,隨機(jī)摸出1個(gè)球是白球的概率是0.8,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上,小白遇到這樣一個(gè)問(wèn)題:
如圖1,在等腰中,,,,求證;
在此問(wèn)題的基礎(chǔ)上,老師補(bǔ)充:
過(guò)點(diǎn)作于點(diǎn)交于點(diǎn),過(guò)作交于點(diǎn),交于點(diǎn),試探究線(xiàn)段,,之間的數(shù)量關(guān)系,并說(shuō)明理由.
小白通過(guò)研究發(fā)現(xiàn),與有某種數(shù)量關(guān)系;
小明通過(guò)研究發(fā)現(xiàn),將三條線(xiàn)段中的兩條放到同一條直線(xiàn)上,即“截長(zhǎng)補(bǔ)短”,再通過(guò)進(jìn)一步推理,可以得出結(jié)論.
閱讀上面材料,請(qǐng)回答下面問(wèn)題:
(1)求證;
(2)猜想與的數(shù)量關(guān)系,并證明;
(3)探究線(xiàn)段,,之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且∠AOB=40°,點(diǎn)M和點(diǎn)N分別是射線(xiàn)OA和射線(xiàn)OB上的動(dòng)點(diǎn),當(dāng)△PMN周長(zhǎng)取最小值時(shí),則∠MPN的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=kx+b交x軸于點(diǎn)A,交y軸于點(diǎn)B,直線(xiàn)y=2x﹣4交x軸于點(diǎn)D,與直線(xiàn)AB相交于點(diǎn)C(3,2).
(1)根據(jù)圖象,寫(xiě)出關(guān)于x的不等式2x﹣4>kx+b的解集;
(2)若點(diǎn)A的坐標(biāo)為(5,0),求直線(xiàn)AB的解析式;
(3)在(2)的條件下,求四邊形BODC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com