【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線相交于點(diǎn),,與軸交于點(diǎn).
(1)求直線的解析式;
(2)若點(diǎn)在軸上,且,求點(diǎn)的坐標(biāo).
【答案】(1)y=x+2;(2)點(diǎn)P的坐標(biāo)為(﹣6,0)或(﹣2,0).
【解析】
(1)求直線的解析式,就是求其中k,b的值,待定系數(shù)法即可,但需要找到兩個(gè)點(diǎn),發(fā)現(xiàn)A,B兩個(gè)點(diǎn)在直線上,只需要知道A,B兩點(diǎn)的坐標(biāo)即可,因?yàn)?/span>A,B同時(shí)在雙曲線上,代入雙曲線方程即可求出A,B的坐標(biāo),進(jìn)而可求出直線的解析式;
(2)因?yàn)?/span>P點(diǎn)在軸上,可以把P的坐標(biāo)設(shè)為,利用兩個(gè)三角形面積之間的關(guān)系,找到關(guān)于的方程即可求出x的值.
解:(1)∵點(diǎn)A(m,3),B(﹣6,n)在雙曲線y=上,
∴m=2,n=﹣1,
∴A(2,3),B(﹣6,﹣1).
將(2,3),B(﹣6,﹣1)代入y=kx+b,
得
解得.
∴直線的解析式為y=x+2.
(2)當(dāng)y=x+2=0時(shí),x=﹣4,
∴點(diǎn)C(﹣4,0).
設(shè)點(diǎn)P的坐標(biāo)為(x,0),
∵S△ACP=S△BOC,A(2,3),B(﹣6,﹣1),
∴×3×|x﹣(﹣4)|=××|0﹣(﹣4)|×|﹣1|,即|x+4|=2,
解得:x1=﹣6,x2=﹣2.
∴點(diǎn)P的坐標(biāo)為(﹣6,0)或(﹣2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出下列結(jié)論:① b2-4ac>0;② 2a+b<0;③ 4a-2b+c=0;④ a︰b︰c= -1︰2︰3.其中正確的是【 】
(A) ①② (B) ②③ (C) ③④ (D)①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),對(duì)稱軸為,則下列結(jié)論中正確的是( )
A.
B. 當(dāng)時(shí),隨的增大而增大
C.
D. 是一元二次方程的一個(gè)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果將點(diǎn)P繞定點(diǎn)M旋轉(zhuǎn)180°后與點(diǎn)Q重合,那么稱點(diǎn)P與點(diǎn)Q關(guān)于點(diǎn)M對(duì)稱,定點(diǎn)M叫做對(duì)稱中心,此時(shí),點(diǎn)M是線段PQ的中點(diǎn).如圖,在直角坐標(biāo)系中,△ABO的頂點(diǎn)A、B、O的坐標(biāo)分別為(1,0)、(0,1)、(0,0),點(diǎn)列P1、P2、P3、…中的相鄰兩點(diǎn)都關(guān)于△ABO的一個(gè)頂點(diǎn)對(duì)稱,點(diǎn)P1與點(diǎn)P2關(guān)于點(diǎn)A對(duì)稱,點(diǎn)P2與點(diǎn)P3關(guān)于點(diǎn)B對(duì)稱,點(diǎn)P3與點(diǎn)P4關(guān)于點(diǎn)O對(duì)稱,點(diǎn)P4與點(diǎn)P5關(guān)于點(diǎn)A對(duì)稱,點(diǎn)P5與點(diǎn)P6關(guān)于點(diǎn)B對(duì)稱,點(diǎn)P6與點(diǎn)P7關(guān)于點(diǎn)O對(duì)稱,…,且這些對(duì)稱中心依次循環(huán),已知P1的坐標(biāo)是(1,1),點(diǎn)P2019的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(操作)BD是矩形ABCD的對(duì)角線,,,將繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)()得到,點(diǎn)A、D的對(duì)應(yīng)點(diǎn)分別為E、F.若點(diǎn)E落在BD上,如圖①,則________.
(探究)當(dāng)點(diǎn)E落在線段DF上時(shí),CD與BE交于點(diǎn)C.其它條件不變,如圖②.
(1)求證:;
(2)CG的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD邊長為5,頂點(diǎn)A,B在x軸的正半軸上,頂點(diǎn)D在y軸的正半軸上,且點(diǎn)A的坐標(biāo)是(3,0),以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過點(diǎn)A.
(1)求點(diǎn)C的坐標(biāo);
(2)求拋物線的解析式;
(3)若將上述拋物線進(jìn)行平移,使得平移后的拋物線的頂點(diǎn)P在直線BC上,且此時(shí)的拋物線恰好經(jīng)過點(diǎn)D,求平移后的拋物線解析式及其頂點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】連接多邊形任意兩個(gè)不相鄰頂點(diǎn)的線段稱為多邊形的對(duì)角線.
(1)
對(duì)角線條數(shù)分別為 、 、 、 .
(2)n邊形可以有20條對(duì)角線嗎?如果可以,求邊數(shù)n的值;如果不可以,請(qǐng)說明理由.
(3)若一個(gè)n邊形的內(nèi)角和為1800°,求它對(duì)角線的條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一動(dòng)點(diǎn),過點(diǎn)D作DE⊥AC于點(diǎn)E,DF⊥BC于點(diǎn)F,連接EF,則線段EF的最小值是___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com