【題目】已知菱形的一個角與三角形的一個角重合,然后它的對角頂點在這個重合角的對邊上,這個菱形稱為這個三角形的親密菱形,如圖,在△CFE中,CF=6,CE=12,∠FCE=45°,以點C為圓心,以任意長為半徑作AD,再分別以點A和點D為圓心,大于AD長為半徑做弧,交EF于點B,AB∥CD.
(1)求證:四邊形ACDB為△CFE的親密菱形;
(2)求四邊形ACDB的面積.
【答案】(1)證明見解析;(2)四邊形ACDB的面積為8.
【解析】
(1)依題可得:AC=CD,AB=DB,BC是∠FCE的角平分線,根據(jù)角平分線的定義和平行線的性質(zhì)得∠ACB=∠ABC,根據(jù)等角對等邊得AC=AB,從而得AC=CD=DB=BA,根據(jù)四邊相等得四邊形是菱形即可得四邊形ACDB是菱形;再根據(jù)題中的新定義即可得證.
(2)設(shè)菱形ACDB的邊長為x,根據(jù)已知可得CF=6,CE=12,FA=6-x,根據(jù)相似三角形的判定和性質(zhì)可得 ,解得:x=4,過點A作AH⊥CD于點H,在Rt△ACH中,根據(jù)銳角三角形函數(shù)正弦的定義即可求得AH ,再由四邊形的面積公式即可得答案.
(1)由已知得:AC=CD,AB=DB,由已知尺規(guī)作圖痕跡得:BC是∠FCE的角平分線,
∴∠ACB=∠DCB,
又∵AB∥CD,
∴∠ABC=∠DCB,
∴∠ACB=∠ABC,
∴AC=AB,
又∵AC=CD,AB=DB,
∴AC=CD=DB=BA,
四邊形ACDB是菱形,
又∵∠ACD與△FCE中的∠FCE重合,它的對角∠ABD頂點在EF上,
∴四邊形ACDB為△FEC的親密菱形.
(2)設(shè)菱形ACDB的邊長為x,∵CF=6,CE=12,
∴FA=6-x,
又∵AB∥CE,
∴△FAB∽△FCE,
∴ ,
即 ,
解得:x=4,
過點A作AH⊥CD于點H,
在Rt△ACH中,∠ACH=45°,
∴sin∠ACH= ,
∴AH=4× =2,
∴四邊形ACDB的面積為: .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號)
根據(jù)以上信息,解答下列問題:
(1)該班共有 名學生.
(2)在條形統(tǒng)計圖中,請把空缺的部分補充完整;
(3)在扇形統(tǒng)計圖中,185型校服所對應(yīng)扇形圓心角=
(4)若全校九年級共有學生800名,請估計穿170型校服的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.
(1)、求證:四邊形AODE是矩形;(2)、若AB=6,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學習小組做摸球?qū)嶒灒畬⑶驍噭蚝髲闹须S機摸出一個球,記下顏色,再把它放回袋中,不斷重復(fù),下表是活動進行中記下的一組數(shù)據(jù)
摸球的次數(shù) | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù) | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)請你估計,當n很大時,摸到白球的頻率將會接近 (精確到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)試估算口袋中黑、白兩種顏色的球有多少只.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線∥AB,與 AB 之間的距離為 2 ,C、D 是直線上兩個動點(點 C在 D 點的左側(cè)),且 AB=CD=5.連接 AC、BC、BD,將△ABC 沿 BC 折疊得到△A′BC.若以 A′、C、B、D 為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)解方程:2x2﹣7x+6=0;
(2)已知:關(guān)于x的方程x2+kx﹣2=0.
①求證:方程有兩個不相等的實數(shù)根;
②若方程的一個根是﹣1,求另一個根及k值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(l)操作:如圖1,點O為線段MN的中點,直線PQ與MN相交于點O,請利用圖1畫出一對以點O為對稱中心的全等三角形;根據(jù)上述操作得到的經(jīng)驗完成下列探究活動:
(2)探究一:如圖2,在四邊形ABCD中,AB∥DC,E為BC邊的中點,∠BAE=∠EAF,AF與DC的延長線相交于點F.試探究線段AB與AF,AF,CF之間的等量關(guān)系,并證明你的結(jié)論;
(3)探究二:如圖3 ,DE,BC相交于點E,BA交DE于點A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=5,CF=1,求DF的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com