【題目】如圖,正方形ABCD中,E為CD上一點,F為BC延長線上一點,CE=CF.
(1)△DCF可以看作是△BCE繞點C旋轉某個角度得到的嗎?
(2)若∠CEB=60°,求∠EFD的度數(shù).
【答案】(1)△DCF可以看作是△BCE繞點C旋轉90°而得到的圖形;(2)∠EFD=15°.
【解析】試題分析:(1)可利用邊角邊證明△DCF≌△BCE,從而即可得;
(2)由(1)中的全等可得∠DFC=∠BEC=60°,易得∠CFE=45°,相減即可得到所求角的度數(shù).
試題解析:(1)∵四邊形ABCD是正方形,
∴DC=BC,∠DCB=∠FCE=90°,
在△DCF和△BCE中,
∴△DCF≌△BCE(SAS),
∴△DCF可以看作是△BCE繞點C旋轉90°而得到的圖形;
(2)∵△BCE≌△DCF,
∴∠DFC=∠BEC=60°,
∵CE=CF,
∴∠CFE=45°,
∴∠EFD=15°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一條光纖線路從A地到B地需要經(jīng)過C地,圖中AC=40千米,∠CAB=30°,∠CBA=45°,求AB的距離.(≈1.41, ≈1.73,結果取整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點,過點A作軸于點B,連結.
(1)求k的值;
(2)如圖,若直線經(jīng)過點A,與x軸相交于點C,且滿足.求:
①直線的表達式;
②記直線與雙曲線的另一交點為,試求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(2,0), B(0,﹣1)和C(4,5)三點.
(1)求二次函數(shù)的解析式;
(2)設二次函數(shù)的圖象與x軸的另一個交點為D,求點D的坐標;
(3)在同一坐標系中畫出直線y=x+1,并寫出當x在什么范圍內(nèi)時,一次函數(shù)的值大于二次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小學時候大家喜歡玩的幻方游戲,老師稍加創(chuàng)新改成了“幻圓”游戲,現(xiàn)在將﹣1、2、﹣3、4、﹣5、6、﹣7、8分別填入圖中的圓圈內(nèi),使橫、豎以及內(nèi)外兩圈上的4個數(shù)字之和都相等,老師已經(jīng)幫助同學們完成了部分填空,則圖中a+b的值為( )
A. ﹣6或﹣3 B. ﹣8或1 C. ﹣1或﹣4 D. 1或﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, ,矩形ABCD的頂點A、B分別在OM、ON上,當B在邊ON上運動時,A 隨之在邊OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,則運動過程中,點C到點O的最大距離為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在數(shù)軸上A點表示數(shù)a,B點示數(shù)b,C點表示數(shù)c,b是最小的正整數(shù),且a、c滿足|a+2|+(c﹣7)2=0.
(1)a= ,b= ,c= ;
(2)點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ;AC= ;BC= ;(用含t的代數(shù)式表示)
(3)請問:3AC﹣5AB的值是否隨著時間t的變化而改變?若變化,請說明理由:若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每個正方形從第三象限的頂點開始,按順時針方向順序,依次記為A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐標原點O,各邊均與x軸或y軸平行,若它們的邊長依次是2,4,6,…,則頂點A20的坐標為 ( )
A. (5,5) B. (5,-5) C. (-5,5) D. (-5,-5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,在正方形ABCD和正方形CGEF中,點B、C、G在同一條直線上,M是線段AE的中點,DM的延長線交EF于點N,連接FM,易證:DM=FM,DM⊥FM(無需寫證明過程)
(1)如圖2,當點B、C、F在同一條直線上,DM的延長線交EG于點N,其余條件不變,試探究線段DM與FM有怎樣的關系?請寫出猜想,并給予證明;
(2)如圖3,當點E、B、C在同一條直線上,DM的延長線交CE的延長線于點N,其余條件不變,探究線段DM與FM有怎樣的關系?請直接寫出猜想.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com