【題目】如圖,拋物線的圖象與坐標軸交于點A,B,D,頂點為E,以AB為直徑畫半圓交y正半軸交于點C,圓心為MP是半圓上的一動點,連接EP.①點E在⊙M的內(nèi)部;②CD的長為;③若PC重合,則∠DPE15°;④在P的運動過程中,若AP ,則PENPE的中點,當P沿半圓從點A運動至點B時,點N運動的路徑長是.其中結論正確的是______________

【答案】②③④

【解析】

ME=2=AM,∴E應該在⊙M上,即可求解;

CD=2×=3,故CD的長為

③過點DDHME,由DH=1MD=R=2,故∠DME=30°,則∠DPE=15°,即可求解;

AK=AEsinα=2×=,同理EK=,PK=,即可求解;

⑤點N的運動軌跡為以R為圓心的半圓,則N運動的路徑長=×2πr=π,

解:拋物線的圖象與坐標軸交于點A,BD,

則點AB、D的坐標分別為:(-10)、(3,0)、(0,-),則點M1,0),
頂點E的坐標為:(1-2),AB=4,CO=OD=,故點D不在⊙M上;
ME=2=AM,∴E應該在⊙M上,故不符合題;
C是圓My軸交點,圓M半徑為2,M10)由勾股定理得OC=,
CD=2×=3,故CD的長為,符合題意;
③如圖1,連接DP、ME,點D、E均在⊙M上,

過點DDHMEH,
DH=1,MD=R=2,
故∠DME=30°,則∠DPE=15°,符合題意;
④如圖2,連接PB、PA、AE
∵點B、E均在圓上,則∠ABP=AEP=α,
sinAEP=sinABP==sinα,則cosα=

過點AAK垂直于PEK,則AK=AEsinα=2×=,EK=AEcosα═,則PK=AK=,故則PE=,符合題意;
⑤如圖3,圖中實點G、NM、F是點N運動中所處的位置,

GF是等腰直角三角形的中位線,GF=AB=2MEAB于點R,則四邊形GEFM為正方形,當點P在半圓任意位置時,中點為N,連接MN,則MNPE,連接NR
NR=ME=MR=RE=RG=RF=GF=1,則點N的運動軌跡為以R為圓心的半圓,則N運動的路徑長=×2πr=π,故不符合題意;
故答案為:②③④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△AOB的三個頂點均在格點上,點A、B的坐標分別為(32)、(1,3).△AOB繞點O逆時針旋轉(zhuǎn)90后得到△A1OB1

1)在網(wǎng)格中畫出△A1OB1,并標上字母;

2)點A關于O點中心對稱的點的坐標為

3)點A1的坐標為 ;

4)在旋轉(zhuǎn)過程中,點B經(jīng)過的路徑為弧BB1,那么弧BB1的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tanAOD=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點A(-1,2)B(m,-1)

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABD是O的內(nèi)接三角形,E是弦BD的中點,點C是O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.

(1)求證:BC是O的切線;

(2)若O的半徑為6,BC=8,求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax22ax+c的圖象經(jīng)過點C0,﹣2),頂點D的坐標為(1,﹣),與x軸交于A、B兩點.

1)求拋物線的解析式.

2)連接AC,E為直線AC上一點,當△AOC∽△AEB時,求點E的坐標和的值.

3)點C關于x軸的對稱點為H,當FC+BF取最小值時,在拋物線的對稱軸上是否存在點Q,使△QHF是直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,四邊形ABCD內(nèi)接于圓O,AC是圓O的直徑,過點A的切線與CD的延長線相交于點P.且∠APC=∠BCP.

(1)求證:∠BAC2ACD.

(2)過圖1中的點DDEACE,交BCG(如圖2),BGGE35OE5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,在初中數(shù)學教學候總使用計算器是否直接影響學生計算能力的發(fā)展這一問題受到了廣泛關注,為此,某校隨機調(diào)查了n名學生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調(diào)查結果 繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:

n名學生對使用計算器影響計算能力的發(fā)展看法人數(shù)統(tǒng)計表

看法

沒有影響

影響不大

影響很大

學生人數(shù)(人)

40

60

m

1)求n的值;

2)統(tǒng)計表中的m=

3)估計該校1800名學生中認為影響很大的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y1x2bx+c與直線y2kx+m相交于A(﹣1,0),B3,4)兩點.

1)請分別求出拋物線解析式和直線的解析式;

2)直接寫出y1y2的最小值.

查看答案和解析>>

同步練習冊答案