【題目】提出問題:

1)如圖1,在正方形ABCD中,點(diǎn)E,H分別在BCAB上,若AEDH于點(diǎn)O,求證:AEDH;

類比探究:

2)如圖2,在正方形ABCD中,點(diǎn)H,EG,F分別在ABBC,CD,DA上,若EFHG于點(diǎn)O,探究線段EFHG的數(shù)量關(guān)系,并說明理由.

【答案】(1)見解析;(2)EFGH,理由見解析

【解析】

1)由正方形的性質(zhì)可得AB=DA,∠ABE=90°=DAH.又由∠ADO+OAD=90°,可證得∠HAO=ADO,繼而證得ABE≌△DAH,可得AE=DH;

2)將FE平移到AM處,則AMEF,AM=EF,將GH平移到DN處,則DNGH,DN=GH.根據(jù)(1)的結(jié)論得AM=DN,所以EF=GH;

1)證明:∵四邊形ABCD是正方形,

ABDA,∠ABE90°=∠DAH

∴∠HAO+OAD90°

AEDH,

∴∠ADO+OAD90°

∴∠HAO=∠ADO

在△ABE和△DAH

∴△ABE≌△DAHASA),

AEDH;

2)解:EFGH

理由:如圖所示:

FE平移到AM處,則AMEFAMEF

GH平移到DN處,則DNGHDNGH

EFGH,

AMDN

根據(jù)(1)的結(jié)論得AMDN,所以EFGH

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,對(duì)稱軸為x=1,給出下列結(jié)論:①abc0;b2=4ac4a+2b+c0;3a+c0,其中正確的結(jié)論是________.(寫出正確命題的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一只甲蟲在5×5的方格(每小格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng),它從A處出發(fā)去看望B,C,D格點(diǎn)處的其他甲蟲,規(guī)定:向上向右走均為正,向下向左走均為負(fù),如果從AB記為A→BBA記為B→A其中第一個(gè)數(shù)表示左右方向移動(dòng),第二個(gè)數(shù)表示上下方向移動(dòng).

1)圖中A→CC→D

2)若這只甲蟲的行走路線為A→B→C→D,請(qǐng)計(jì)算該甲蟲走過的路程;

3)若圖中格點(diǎn)處另有兩只甲蟲M,N.M→AM→N,則N→A應(yīng)記為什么?直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀理解)

點(diǎn)A、BC為數(shù)軸上三點(diǎn),如果點(diǎn)CAB之間且到A的距離是點(diǎn)CB的距離3倍,那么我們就稱點(diǎn)C{A,B}的奇點(diǎn).

例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C{A,B}的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B}的奇點(diǎn),但點(diǎn)D{B,A}的奇點(diǎn).

(知識(shí)運(yùn)用)

如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5

1)數(shù)     所表示的點(diǎn)是{MN}的奇點(diǎn);數(shù)     所表示的點(diǎn)是{NM}的奇點(diǎn);

2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動(dòng),當(dāng)P點(diǎn)運(yùn)動(dòng)到數(shù)軸上的什么位置時(shí),P、AB中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

小昊遇到這樣一個(gè)問題:如圖1,在ABC中,∠ACB=90°,BEAC邊上的中線,點(diǎn)DBC邊上,CD:BD=1:2,ADBE相交于點(diǎn)P,求的值.

小昊發(fā)現(xiàn),過點(diǎn)AAFBC,交BE的延長(zhǎng)線于點(diǎn)F,通過構(gòu)造AEF,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).請(qǐng)回答的值為 

參考小昊思考問題的方法,解決問題:

如圖 3,在ABC中,∠ACB=90°,點(diǎn)DBC的延長(zhǎng)線上,ADAC邊上的中線BE的延長(zhǎng)線交于點(diǎn)P,DC:BC:AC=1:2:3 .

(1)求的值;

(2)若CD=2,則BP=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1|3|5×(﹣+(﹣4

2)(﹣224÷(﹣+(﹣12016

3×(﹣24

4)﹣12014﹣(10.5)÷×[(﹣234]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從有關(guān)方面獲悉,在我市農(nóng)村已經(jīng)實(shí)行了農(nóng)民新型合作醫(yī)療保險(xiǎn)制度.享受醫(yī)保的農(nóng)民可在規(guī)定的醫(yī)院就醫(yī)并按規(guī)定標(biāo)準(zhǔn)報(bào)銷部分醫(yī)療費(fèi)用.下表是醫(yī)療費(fèi)用報(bào)銷的標(biāo)準(zhǔn):

(說明:住院醫(yī)療費(fèi)用為整數(shù),住院醫(yī)療費(fèi)用的報(bào)銷分段計(jì)算.如:某人住院醫(yī)療費(fèi)用共30000元,則5000元按30%報(bào)銷、15000元按40%報(bào)銷、余下的10000元按50%報(bào)銷;題中涉及到的醫(yī)療費(fèi)均指允許報(bào)銷的醫(yī)療費(fèi))

(1)甲農(nóng)民一年內(nèi)實(shí)際門診醫(yī)療費(fèi)為2000元,則標(biāo)準(zhǔn)報(bào)銷的金額為 元;

乙農(nóng)民一年住院醫(yī)療費(fèi)為15000元,則按標(biāo)準(zhǔn)報(bào)銷的金額為 元;

(2)設(shè)某農(nóng)民一年中住院的實(shí)際醫(yī)療費(fèi)用為x元(5001≤x≤20000),按標(biāo)準(zhǔn)報(bào)銷的金額為多少元?(用含x的代數(shù)式表示)

(3)若某農(nóng)民一年內(nèi)本人自負(fù)住院醫(yī)療費(fèi)17000元(自負(fù)醫(yī)療費(fèi)=實(shí)際醫(yī)療費(fèi)﹣按標(biāo)準(zhǔn)報(bào)銷的金額),則該農(nóng)民當(dāng)年實(shí)際醫(yī)療費(fèi)用共多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形ABCD中,M、N分別為ABCD的中點(diǎn).

(1)求證:四邊形AMCN是平行四邊形;

(2)若AC=BC=5,AB=6,求四邊形AMCM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答下列問題:

1)計(jì)算:6÷()

方方同學(xué)的計(jì)算過程如下:原式=6÷()=-12186

請(qǐng)你判斷方方同學(xué)的計(jì)算過程是否正確,若不正確,請(qǐng)你寫出正確的計(jì)算過程.

(2)請(qǐng)你參考黑板中老師的講解,用運(yùn)算律簡(jiǎn)便計(jì)算(請(qǐng)寫出具體的解題過程):

①999×(-15);②999×+333×(-)-999×.

查看答案和解析>>

同步練習(xí)冊(cè)答案