【題目】在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn)、點(diǎn),與雙曲線 交于兩點(diǎn),分別過點(diǎn)、點(diǎn)軸,軸,垂足分別為點(diǎn)、點(diǎn),

(1)求線段的長(zhǎng);

(2)若

①求直線的解析式;

②請(qǐng)你判斷線段與線段的大小關(guān)系,并說明理由.

【答案】(1);(2)直線的解析式為;(3),理由見解析.

【解析】分析:(1)求出點(diǎn)的橫坐標(biāo),代入反比例函數(shù)解析式求得縱坐標(biāo)即可求出的長(zhǎng).

(2) ①求出兩點(diǎn)的坐標(biāo),用待定系數(shù)法即可求得直線的解析式;

②過點(diǎn)軸,垂足為點(diǎn),證明,即可證明.

詳解:(1)

∴點(diǎn)的橫坐標(biāo)是1,

∵點(diǎn)在雙曲線 的圖象上,

,

.

(2) ,

.

①∵點(diǎn)在雙曲線 的圖象上,,

,

設(shè)直線的解析式為: , 

∵直線過點(diǎn),

,

解得:

∴直線的解析式為:.

.

解法一:過點(diǎn)軸,垂足為點(diǎn),

∵直線軸交于點(diǎn),

∴令,則,,

∵直線軸交于點(diǎn)

∴令,則,,

、,

,,

軸,.,

,

, ,

,

.

解法二:過點(diǎn)軸,垂足為點(diǎn),

根據(jù)勾股定理可得, ,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,CD、C′D′分別是Rt△ABC,Rt△A′B′C′斜邊上的高,且CB=C′B′,CD=C′D′.求證:△ABC≌△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 的對(duì)角線 AC BD 相交于點(diǎn) O,CEBD,DEAC.

(1)求證:四邊形 OCED 為菱形

(2)AD=7,AB=4,求四邊形 OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若點(diǎn)(﹣2,y1)和(﹣ ,y2)在該圖象上,則y1>y2 . 其中正確的結(jié)論是(填入正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮從家步行到公交車站臺(tái),等公交車去學(xué)校. 圖中的折線表示小亮的行程s(km)與所花時(shí)間t(min)之間的函數(shù)關(guān)系. 下列說法錯(cuò)誤的是

A. 他離家8km共用了30min B. 他等公交車時(shí)間為6min

C. 他步行的速度是100m/min D. 公交車的速度是350m/min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AD平分∠BACADBC,垂足為DAN△ABC外角∠CAM的平分線,CEAN,垂足為E.

(1)求證:四邊形ADCE是矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是正方形?給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠C=90°,點(diǎn)DAB的中點(diǎn),點(diǎn)E,F(xiàn)分別在BC,AC上,且AF=CE.

(1)填空:∠A的度數(shù)是   

(2)探究DEDF的關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2 . 已知y與t的函數(shù)關(guān)系圖像如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段).

(1)試根據(jù)圖(2)求0<t≤5時(shí),△BPQ的面積y關(guān)于t的函數(shù)解析式;
(2)求出線段BC、BE、ED的長(zhǎng)度;
(3)當(dāng)t為多少秒時(shí),以B、P、Q為頂點(diǎn)的三角形和△ABE相似;
(4)如圖(3)過E作EF⊥BC于F,△BEF繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)一定角度,如果△BEF中E、F的對(duì)應(yīng)點(diǎn)H、I恰好和射線BE、CD的交點(diǎn)G在一條直線,求此時(shí)C、I兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,BC=12,CD=9,將△ABE沿BE折疊,使點(diǎn)A恰好落在對(duì)角線BD上的F處,則DE的長(zhǎng)是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案