【題目】已知拋物線

(1)寫(xiě)出該拋物線的頂點(diǎn)D坐標(biāo)和對(duì)稱軸.

(2)拋物線與軸交于A,B兩點(diǎn),求△ABD的面積

【答案】(1)(-1,4),直線= -1(2)8

【解析】(1)將二次函數(shù)配方后即可求得其頂點(diǎn)坐標(biāo)及對(duì)稱軸;

(2)根據(jù)上題確定的二次函數(shù)的頂點(diǎn)坐標(biāo)和拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo)就能夠求得△ABD的面積.

解:(1)由y=-x2-2x+3= -( x2+2x-3)=-( x2+2x+1-3-1)= -(x+1)2+4,

∴該拋物線的頂點(diǎn)D坐標(biāo)為(-1,4)對(duì)稱軸x=-1,

(2)令y=0,-x2-2x+3=0,則x2+2x-3=0,

(x+3)(x-1)=0,x1=-3,x2=1,

∴A(-3,0),B(1,0).

又∵D(-1,4),

∴AB=4,OC=4,

∴S△ABC=AB×OC=×4×4=8.

“點(diǎn)睛”本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是能夠利用配方法確定二次函數(shù)的頂點(diǎn)坐標(biāo)和拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo),難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲做180個(gè)機(jī)器零件與乙做240個(gè)機(jī)器零件所用的時(shí)間相同,已知兩人一小時(shí)共做70個(gè)機(jī)器零件,每人每小時(shí)各做多少個(gè)機(jī)器零件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(﹣4a2b)÷(﹣2b)的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,將筆記本活頁(yè)一角折過(guò)去,使角的頂點(diǎn)A落在A處,BC為折痕.

(1)圖①中,若∠1=30,求∠ABD的艘數(shù);

(2)如果將圖①的另一角∠A′BD斜折過(guò)去,使BD邊與BA重合,折痕為BE,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D,如圖②所示.∠1=30,求∠2以及∠CBE的度數(shù);

(3)如果將圖①的另一角斜折過(guò)去,使BD邊落在∠l內(nèi)部,折痕為BE,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D,如圖③所示,若∠1=40,設(shè)∠A′BD′=α,∠EBD=β,請(qǐng)直接回答:

①α的取值范圍和β的取值范圍:

②α與β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸、軸分別相交于點(diǎn)A,B,四邊形ABCD是正方形,拋物線在經(jīng)過(guò)A,D兩點(diǎn).

1求該拋物線表達(dá)式;

2連接BD,將線段BD繞著D點(diǎn)順時(shí)針旋轉(zhuǎn)90度,得到DB’.直接寫(xiě)出點(diǎn)B’的坐標(biāo),并判斷點(diǎn)B’是否落在拋物線上,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OAOC,OBOD,下面結(jié)論中,其中說(shuō)法正確的是( 。


①∠AOB=COD;
②∠AOB+COD=90°;
③∠BOC+AOD=180°;
④∠AOC-COD=BOC.

A①②③

B①②④

C①③④

D②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣1)2+4,

1)求出二次函數(shù)的頂點(diǎn)坐標(biāo)及與x軸交點(diǎn)坐標(biāo),結(jié)合開(kāi)口方向再在網(wǎng)格中畫(huà)出草圖.

2)觀察圖象確定:x取何值時(shí),y隨著x的增大而增大,當(dāng)X取何值時(shí),y隨著x的增大而減少.

3)觀察圖象確定:x取何值時(shí)y0x取何值時(shí)y0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,順次連接四邊形ABCD各邊中點(diǎn)得四邊形EFGH,要使四邊形EFGH為矩形,應(yīng)添加的條件是(
A.AB∥DC
B.AC=BD
C.AC⊥BD
D.AB=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AE⊥BC,交邊BC于點(diǎn)E,點(diǎn)F為邊CD上一點(diǎn),且DF=BE.過(guò)點(diǎn)F作FG⊥CD,交邊AD于點(diǎn)G.求證:DG=DC.

查看答案和解析>>

同步練習(xí)冊(cè)答案