【題目】如圖,點(diǎn)A是反比例函數(shù) 在第二象限內(nèi)圖象上一點(diǎn),點(diǎn)B是反比例函數(shù) 在第一象限內(nèi)圖象上一點(diǎn),直線AB與y軸交于點(diǎn)C,且AC=BC,連接OA、OB,則△AOB的面積是

【答案】3
【解析】解:分別過A、B兩點(diǎn)作AD⊥x軸,BE⊥x軸,垂足為D、E,
∵AC=CB,∴OD=OE,
設(shè)A(﹣a, ),則B(a, ),
故SAOB=S梯形ADBE﹣SAOD﹣SBOE
= + )×2a﹣
=3,
所以答案是:3.

【考點(diǎn)精析】本題主要考查了反比例函數(shù)的圖象和反比例函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點(diǎn);性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位招聘員工采取筆試與面試相結(jié)合的方式進(jìn)行,兩項(xiàng)成績滿分均為100分.根據(jù)規(guī)定,筆試成績和面試成績分別按一定的百分比折合綜合成績(綜合成績的滿分仍為100分).已知小明應(yīng)聘的筆試成績?yōu)?5分,面試成績?yōu)?0分,現(xiàn)得知小明的最后綜合成績?yōu)?8分.設(shè)小明的筆試成績所占的百分比為x , 面試成績所占的百分比為y , 根據(jù)題意列方程組得

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿其對角線AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′與CD交于點(diǎn)E,若AB=8,AD=3,則圖中陰影部分的周長為(
A.16
B.19
C.22
D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了《相似圖形》一章后,小華想測量一座底部不可直接到達(dá)的塔DC的高度,上午8點(diǎn)時,測得塔的影子頂端落在地面上的A處,此時小華站在地面上的G處,發(fā)現(xiàn)自己的影子頂端落在地面上的E處;上午10點(diǎn)時,測得塔的影子頂端落在地面上的B處,此時站在G處的小華發(fā)現(xiàn)自己的影子頂端落在地面上的F處.已知小華身高HG1.8 m,經(jīng)測量AB10 m,FE0.4 m,求塔DC的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

發(fā)現(xiàn)問題:

如圖,已知:OAB中,OB=3,將OAB繞點(diǎn)O逆時針旋轉(zhuǎn)90°OAB,連接BB

則BB=

問題探究:

如圖,已知ABC是邊長為4的等邊三角形,以BC為邊向外作等邊BCD,P為ABC內(nèi)一點(diǎn),將線段CP繞點(diǎn)C逆時針旋轉(zhuǎn)60°,P的對應(yīng)點(diǎn)為Q.

(1)求證:DCQ≌△BCP

(2)求PA+PB+PC的最小值.

實(shí)際應(yīng)用:

如圖,某貨運(yùn)場為一個矩形場地ABCD,其中AB=500米,AD=800米,頂點(diǎn)A、D為兩個出口,現(xiàn)在想在貨運(yùn)廣場內(nèi)建一個貨物堆放平臺P,在BC邊上(含B、C兩點(diǎn))開一個貨物入口M,并修建三條專用車道PA、PD、PM.若修建每米專用車道的費(fèi)用為10000元,當(dāng)M,P建在何處時,修建專用車道的費(fèi)用最少?最少費(fèi)用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x3yxy3_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+a=0沒有實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(1)班40名同學(xué)中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個班同學(xué)年齡的中位數(shù)是歲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠BAC=90°,AB=AC,A(﹣3,0),B(0,1),C(m,n).

(1)請直接寫出C點(diǎn)坐標(biāo).
(2)將△ABC沿x軸的正方向平移t個單位,B′、C′兩點(diǎn)的對應(yīng)點(diǎn)、正好落在反比例函數(shù)y= 在第一象限內(nèi)圖象上.請求出t,k的值.
(3)在(2)的條件下,問是否存x軸上的點(diǎn)M和反比例函數(shù)y= 圖象上的點(diǎn)N,使得以B′、C′,M,N為頂點(diǎn)的四邊形構(gòu)成平行四邊形?如果存在,請求出所有滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案