【題目】(探索發(fā)現(xiàn))
如圖①,是一張直角三角形紙片,,小明想從中剪出一個(gè)以為內(nèi)角且面積最大的矩形,經(jīng)過(guò)多次操作發(fā)現(xiàn),當(dāng)沿著中位線、剪下時(shí),所得的矩形的面積最大,隨后,他通過(guò)證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為_____________.
(拓展應(yīng)用)
如圖②,在中,,邊上的高,矩形的頂點(diǎn)、分別在邊、上,頂點(diǎn)、在邊上,則矩形面積的最大值為_________.(用含的代數(shù)式表示)
(靈活應(yīng)用)
如圖③,有一塊“缺角矩形”,,,,,小明從中剪出了一個(gè)面積最大的矩形(為所剪出矩形的內(nèi)角),求該矩形的面積.
(實(shí)際應(yīng)用)
如圖④,現(xiàn)有一塊四邊形的木板余料,經(jīng)測(cè)量,,,且,,木匠徐師傅從這塊余料中裁出了頂點(diǎn)、在邊上且面積最大的矩形,求該矩形的面積.
【答案】【探索發(fā)現(xiàn)】;【拓展應(yīng)用】;【靈活應(yīng)用】720;【實(shí)際應(yīng)用】2205cm2.
【解析】
(1)【探索發(fā)現(xiàn)】:由中位線知EF=BC、ED=AB、由 可得結(jié)論;
(2)【拓展應(yīng)用】:設(shè)PN=b,證明△APN∽△ABC,表示PQ的長(zhǎng),根據(jù)矩形的面積公式得:S=bPQ=+bh,根據(jù)二次函數(shù)求最值即可;
(3)【靈活應(yīng)用】:添加如圖1輔助線,取BF中點(diǎn)I,FG的中點(diǎn)K,由矩形性質(zhì)知AE=EH=20、CD=DH=16,分別證△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,從而判斷出中位線IK的兩端點(diǎn)在線段AB和DE上,利用【探索發(fā)現(xiàn)】結(jié)論解答即可;
(4)【實(shí)際應(yīng)用】:延長(zhǎng)BA、CD交于點(diǎn)E,過(guò)點(diǎn)E作EH⊥BC于點(diǎn)H,由tanB和tanC得BH和CH、EH的長(zhǎng),繼而求得BE和CE的長(zhǎng),可判斷中位線PQ的兩端點(diǎn)在線段AB、CD上,利用【拓展應(yīng)用】結(jié)論解答可得.
(1)【探索發(fā)現(xiàn)】:設(shè)EF=x,ED=y,
∵EF、ED為△ABC中位線,
∴ED∥AB,EF∥BC,EF=BC,ED=AB,
∴AB=2ED=2y,BC=2EF=2x,
又∠B=90°,
∴四邊形FEDB是矩形,
則 ,
故答案為:;
(2)【拓展應(yīng)用】:設(shè)PN=b,
∵PN∥BC,
∴△APN∽△ABC,
∴,
∵BC=a,BC邊上的高AD=h,
∴ ,PQ=,
∴S=bPQ=+bh,
∴S的最大值為: ;
則矩形PQMN面積的最大值為;
故答案為:;
(3)【靈活應(yīng)用】:如圖1,延長(zhǎng)BA、DE交于點(diǎn)F
由題意知四邊形ABCH是矩形,
∵AB=32,BC=40,AE=20,CD=16,
∴EH=20、DH=16,
∴AE=EH、CD=DH,
在△AEF和△HED中,
∵ ,
∴△AEF≌△HED(ASA),
∴AF=DH=16,
同理△CDG≌△HDE,
∴CG=HE=20,
∴BI==24,
∵BI=24<32,
∴中位線IK的兩端點(diǎn)在線段AB和DE上,
過(guò)點(diǎn)K作KL⊥BC于點(diǎn)L,
由【探索發(fā)現(xiàn)】知矩形的最大面積為×BGBF=×(40+20)×(32+16)=720,
答:該矩形的面積為720;
(4)【實(shí)際應(yīng)用】:如圖2,延長(zhǎng)BA、CD交于點(diǎn)E,過(guò)點(diǎn)E作EH⊥BC于點(diǎn)H,
∵tanB=,
設(shè)EH=4x,BH=3x,
∵tanC=2=,
∴CH=2x,
∵BC=BH+CH=105=3x+2x,x=21,
∴BH=63,CH=42,EH=84,
由勾股定理得:BE=,
∵AB=60,
∴AE=45,
∴BE的中點(diǎn)Q在線段AB上,
∵CD=70,
∴CE的中點(diǎn)P在線段CD上,
∴中位線PQ的兩端點(diǎn)在線段AB、CD上,
由【拓展應(yīng)用】知,矩形PQMN的最大面積為BCEH=×105×84=2205cm2,
答:該矩形的面積為2205cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過(guò)點(diǎn)B作BM⊥x軸,垂足為M,BM=OM,OB=,點(diǎn)A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接AO,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點(diǎn)A、B重合)的任一點(diǎn),點(diǎn)C、D為⊙O上的兩點(diǎn),若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說(shuō)明理由;
(2)若的長(zhǎng)為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長(zhǎng)為24+13,直接寫(xiě)出AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,-2).
(1)求直線AB的解析式;
(2)直線AB上是否存在點(diǎn)C,使△BOC的面積為2?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明想用鏡子測(cè)量一棵松樹(shù)的高度,但因樹(shù)旁有一條河,不能測(cè)量鏡子與樹(shù)之間的距離,于是他兩次利用鏡子,如圖所示,第一次他把鏡子放在C點(diǎn),人在F點(diǎn)時(shí)正好在鏡子中看到樹(shù)尖A;第二次把鏡子放在D點(diǎn),人在G點(diǎn)正好看到樹(shù)尖A.已知小明的眼睛距離地面1.70m,量得CD=12m,CF=1.8m,DH=3.8m.請(qǐng)你求出松樹(shù)的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)分別標(biāo)有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機(jī)摸出一個(gè)小球記下數(shù)為x,小穎在剩下的3個(gè)球中隨機(jī)摸出一個(gè)小球記下數(shù)為y,這樣確定了點(diǎn)P(x,y),請(qǐng)用“列表法”或“樹(shù)狀圖法”求點(diǎn)P(x,y)在函數(shù)y=-x+5圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的頂點(diǎn),,,若將先沿軸進(jìn)行第一次對(duì)稱變換,所得圖形沿軸進(jìn)行第二次對(duì)稱變換,軸對(duì)稱變換的對(duì)稱軸遵循軸、軸、軸、軸…的規(guī)律進(jìn)行,則經(jīng)過(guò)第2018次變換后,頂點(diǎn)坐標(biāo)為()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是反比例函數(shù)的圖象,點(diǎn),分別在圖象的兩支上,以為對(duì)角線作矩形且軸.
(1)當(dāng)線段過(guò)原點(diǎn)時(shí),分別寫(xiě)出與,與的一個(gè)等量關(guān)系式;
(2)當(dāng)、兩點(diǎn)在直線上時(shí),求矩形的周長(zhǎng);
(3)當(dāng)時(shí),探究與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】詩(shī)詞是我國(guó)古代文化中的瑰寶,某市教育主管部門為了解本市初中生對(duì)詩(shī)詞的學(xué)習(xí)情況,舉辦了一次“中華詩(shī)詞”背誦大賽,隨機(jī)抽取了部分同學(xué)的成績(jī)(x為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計(jì)圖表.
組別 | 成績(jī)分組(單位:分) | 頻數(shù) |
A | 50≤x<60 | 40 |
B | 60≤x<70 | a |
C | 70≤x<80 | 90 |
D | 80≤x<90 | b |
E | 90≤x<100 | 100 |
合計(jì) | c |
根據(jù)以上信息解答下列問(wèn)題:
(1)統(tǒng)計(jì)表中a= ,b= ,c= ;
(2)扇形統(tǒng)計(jì)圖中,m的值為 ,“E”所對(duì)應(yīng)的圓心角的度數(shù)是 (度);
(3)若參加本次大賽的同學(xué)共有4000人,請(qǐng)你估計(jì)成績(jī)?cè)?/span>80分及以上的學(xué)生大約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com