【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點A、B重合)的任一點,點C、D為⊙O上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;
(2)若的長為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.
【答案】(1)∠CPD是直徑AB的“回旋角”,理由見解析;(2)“回旋角”∠CPD的度數(shù)為45°;(3)滿足條件的AP的長為3或23.
【解析】
(1)由∠CPD、∠BPC得到∠APD,得到∠BPC=∠APD,所以∠CPD是直徑AB的“回旋角”;(2)利用CD弧長公式求出∠COD=45°,作CE⊥AB交⊙O于E,連接PE,利用∠CPD為直徑AB的“回旋角”,得到∠APD=∠BPC,∠OPE=∠APD,得到∠OPE+∠CPD+∠BPC=180°,即點D,P,E三點共線,∠CED=∠COD=22.5°,
得到∠OPE=90°﹣22.5°=67.5°,則∠APD=∠BPC=67.5°,所以∠CPD=45°;(3)分出情況P在OA上或者OB上的情況,在OA上時,同理(2)的方法得到點D,P,F在同一條直線上,得到△PCF是等邊三角形,連接OC,OD,過點O作OG⊥CD于G,
利用sin∠DOG,求得CD,利用周長求得DF,過O作OH⊥DF于H,利用勾股定理求得OP,進而得到AP;在OB上時,同理OA計算方法即可
∠CPD是直徑AB的“回旋角”,
理由:∵∠CPD=∠BPC=60°,
∴∠APD=180°﹣∠CPD﹣∠BPC=180°﹣60°﹣60°=60°,
∴∠BPC=∠APD,
∴∠CPD是直徑AB的“回旋角”;
(2)如圖1,∵AB=26,
∴OC=OD=OA=13,
設∠COD=n°,
∵的長為π,
∴
∴n=45,
∴∠COD=45°,
作CE⊥AB交⊙O于E,連接PE,
∴∠BPC=∠OPE,
∵∠CPD為直徑AB的“回旋角”,
∴∠APD=∠BPC,
∴∠OPE=∠APD,
∵∠APD+∠CPD+∠BPC=180°,
∴∠OPE+∠CPD+∠BPC=180°,
∴點D,P,E三點共線,
∴∠CED=∠COD=22.5°,
∴∠OPE=90°﹣22.5°=67.5°,
∴∠APD=∠BPC=67.5°,
∴∠CPD=45°,
即:“回旋角”∠CPD的度數(shù)為45°,
(3)①當點P在半徑OA上時,如圖2,過點C作CF⊥AB交⊙O于F,連接PF,
∴PF=PC,
同(2)的方法得,點D,P,F在同一條直線上,
∵直徑AB的“回旋角”為120°,
∴∠APD=∠BPC=30°,
∴∠CPF=60°,
∴△PCF是等邊三角形,
∴∠CFD=60°,
連接OC,OD,
∴∠COD=120°,
過點O作OG⊥CD于G,
∴CD=2DG,∠DOG=∠COD=60°,
∴DG=ODsin∠DOG=13×sin60°=
∴CD=,
∵△PCD的周長為24+13,
∴PD+PC=24,
∵PC=PF,
∴PD+PF=DF=24,
過O作OH⊥DF于H,
∴DH=DF=12,
在Rt△OHD中,OH=
在Rt△OHP中,∠OPH=30°,
∴OP=10,
∴AP=OA﹣OP=3;
②當點P在半徑OB上時,
同①的方法得,BP=3,
∴AP=AB﹣BP=23,
即:滿足條件的AP的長為3或23.
科目:初中數(shù)學 來源: 題型:
【題目】某校七年級10個班的300名學生即將參加學校舉行的研究旅行活動,學校提出以下4個活動主題:A.赤水丹霞地貌考察;B.平塘天文知識考察;C.山關紅色文化考察;D.海龍電土司文化考察,為了解學生喜歡的活動主題,學生會開展了一次調(diào)查研究,請將下面的過程補全
(1)收集數(shù)據(jù):學生會計劃調(diào)查學生喜歡的活動主題情況,下面抽樣調(diào)查的對象選擇合理的是______.(填序號)
①選擇七年級3班、4班、5班學生作為調(diào)查對象
②選擇學校旅游攝影社團的學生作為調(diào)查對象
③選擇各班學號為6的倍數(shù)的學生作為調(diào)查對象
(2)整理、描述數(shù)據(jù):通過調(diào)査后,學生會同學繪制了如下兩幅不完整的統(tǒng)計圖,請把統(tǒng)計圖補充完整
某校七年級學生喜歡的活動主題條形統(tǒng)計圖某校七年級學生喜歡的活動主題扇形統(tǒng)計圖
(3)分析數(shù)據(jù)、推斷結論:請你根據(jù)上述調(diào)查結果向學校推薦本次活動的主題,你的推薦是______(填A-D的字母代號),估算全年級大約有多少名學生喜歡這個主題活動
(4)若在5名學生會干部(3男2女)中,隨機選取2名同學擔任活動的組長和副組長,求抽出的兩名同學恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知內(nèi)接于圓,點為弧上一點,連接交于點,.
(1)如圖1,求證:弧弧;
(2)如圖2,過作于點,交圓點,連接交于點,且,求的度數(shù);
(3)如圖3,在(2)的條件下,圓上一點與點關于對稱,連接,交于點,點為弧上一點,交于點,交的延長線于點,,的周長為20,,求圓半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC內(nèi)接于⊙O,直徑AD交BC于點E,延長AD至點F,使DF=2OD,連接FC并延長交過點A的切線于點G,且滿足AG∥BC,連接OC,若cos∠BAC=,BC=8.
(1)求證:CF是⊙O的切線;
(2)求⊙O的半徑OC;
(3)如圖2,⊙O的弦AH經(jīng)過半徑OC的中點F,連結BH交弦CD于點M,連結FM,試求出FM的長和△AOF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一塊直角三角板OAB放在平面直角坐標系中,B(2,0),∠AOB=60°,點A在第一象限,過點A的雙曲線為.在x軸上取一點P,過點P作直線OA的垂線l,以直線l為對稱軸,線段OB經(jīng)軸對稱變換后的像是OB.
(1)當點O與點A重合時,點P的坐標是 ;
(2)設P(t,0),當OB與雙曲線有交點時,t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在水果銷售旺季,某水果店購進一優(yōu)質(zhì)水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的不等式組無解,且關于y的分式方程有非正整數(shù)解,則符合條件的所有整數(shù)k的值之和為( 。
A.﹣7B.﹣12C.﹣20D.﹣34
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD的一邊BC在直角坐標系中x軸上,折疊邊AD,使點D落在x軸上點F處,折痕為AE,已知AB=8,AD=10,并設點B坐標為(m,0),其中m<0.
(1)求點E、F的坐標(用含m的式子表示);
(2)連接OA,若△OAF是等腰三角形,求m的值;
(3)如圖2,設拋物線y=a(x﹣m+6)2+h經(jīng)過A、E兩點,其頂點為M,連接AM,若∠OAM=90°,求a、h、m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com