【題目】如圖,是一個長方體的三視圖(單位:cm),根據(jù)圖中數(shù)據(jù)計算這個長方體的體積是_______cm3.

【答案】24

【解析】試題本題考查了由三視圖判斷幾何體;首先要判斷出幾何體的形狀,然后根據(jù)它的體積公式進行計算即可.主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看所得到的圖形,根據(jù)三視圖可以看出該幾何體的主視圖及左視圖都是相同的矩形,俯視圖是一個正方形,可確定這個幾何體是一個長方體,且長方體的長為3,寬為2,高為4,因此它的體積應(yīng)該是長××高,即3×2×4=24cm3

解:該幾何體的主視圖及左視圖都是相同的矩形,俯視圖是一個正方形,可確定這個幾何體是一個長方體,依題意可求出該幾何體的體積為3×2×4=24cm3

答:這個長方體的體積是24cm3

故答案為:24

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB是⊙O的直徑,弦CD垂直于AB交于點E,∠COB=60°,CD=2 ,則陰影部分的面積為(
A.
B.
C.π
D.2π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A、B、C、D是坐標(biāo)軸上的點且點C坐標(biāo)是(0,﹣1),AB=5,點(a,b)在如圖所示的陰影部分內(nèi)部(不包括邊界),已知OA=OD=4,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面文字,根據(jù)所給信息解答下面問題:把幾個數(shù)用大括號括起來,中間用逗號隔開,其中大括號內(nèi)的數(shù)稱其為集合的元素,如:{3,4},3和4是集合{3,4}的元素。如果一個集合滿足:只要其中有一個元素a,使得﹣2a+4也是這個集合的元素,那么這樣的集合我們稱為條件集合。例如:⑴{3,﹣2},因為﹣2×3+4=﹣2,﹣2恰好是這個集合的元素,所以{3,﹣2}是條件集合。⑵{﹣2,9,8},因為﹣2×(﹣2)+4=8,8恰好是這個集合的元素,所以{﹣2,9,8}是條件集合.

(1)集合{﹣5,14}是否是條件集合?

(2)集合是否是條件集合?

(3)若集合{8,n}和{m}都是條件集合.求m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃容器高19cm,底面周長為60cm,在外側(cè)距下底1.5cm的點A處有一只蜘蛛,在蜘蛛正對面的圓柱形容器的外側(cè),距上底1.5cm處的點B處有一只蒼蠅,蜘蛛急于捕捉蒼蠅充饑,請你幫蜘蛛計算它沿容器側(cè)面爬行的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】谷歌人工智能AlphaGo機器人與李世石的圍棋挑戰(zhàn)賽引起人們的廣泛關(guān)注,人工智能完勝李世石.某教學(xué)網(wǎng)站開設(shè)了有關(guān)人工智能的課程并策劃了A,B兩種網(wǎng)上學(xué)習(xí)的月收費方式:

設(shè)小明每月上網(wǎng)學(xué)習(xí)人工智能課程的時間為x小時,方案A,B的收費金額分別為yA元、yB元.

(1)當(dāng)x≥50時,分別求出yA、yBx之間的函數(shù)表達式;

(2)若小明3月份上該網(wǎng)站學(xué)習(xí)的時間為60小時,則他選擇哪種方式上網(wǎng)學(xué)習(xí)合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCO在平面直角坐標(biāo)系中,且A(1,2),B(5,4),C(6,0),O(0,0).

(1)求四邊形ABCO的面積;

(2)將四邊形ABCO四個頂點的橫坐標(biāo)都減去3,同時縱坐標(biāo)都減去2,畫出得到的四邊形ABCO,你能從中得到什么結(jié)論?

(3)直接寫出四邊形ABCO的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列從左到右的變形,是因式分解的是(

A. m2-1=(m+1)(m-1) B. 2(a-b)=2a-2b C. x2-2x+1=x(x-2)+1, D. a(a-b)(b+1)=(a2 -ab)(b+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y+3和2x-1成正比例,且x=2時,y=1。

(1)寫出y與x的函數(shù)解析式。

(2)當(dāng)0≤x≤3 時,y的最大值和最小值分別是多少?

查看答案和解析>>

同步練習(xí)冊答案