【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,按這樣的規(guī)律進行下去A10B10C10D10E10F10的邊長為( )

A B C D

【答案】D

【解析】

試題分析:連結(jié)OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得E1OD1=60°,E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2E1D1于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=2×2,依此規(guī)律可得正六邊形A10B10C10D10E10F10的邊長=9×2,然后化簡即可

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖9,正方形的面積為4,反比例函數(shù)()的圖象經(jīng)過點

(1) 求點B的坐標(biāo)和的值;

(2) 將正方形分別沿直線翻折,得到正方形、.設(shè)線段、分別與函數(shù) ()的圖象交于點,求直線EF的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師家買了一套新房,其結(jié)構(gòu)如圖所示(單位:m)他打算將臥室鋪上木地板,其余部分鋪上地磚

(1)木地板和地磚分別需要多少平方米?

(2)如果地磚的價格為每平方米x,木地板的價格為每平方米3x那么王老師需要花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABC中,∠B <C,AD,AE分別是ABC的高和角平分線。

(1)若∠B=30°,C=50°,試確定∠DAE的度數(shù);

(2)試寫出∠DAE,B,C的數(shù)量關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀再解答:我們已經(jīng)知道,根據(jù)幾何圖形的面積關(guān)系可以說明完全平方公式,實際上還有一些等式也可以用這種方式加以說明,例如:

(2a+b)(a+b)=2a2+3ab+b2,就可以用圖的面積關(guān)系來說明.

(1)根據(jù)圖寫出一個等式:        ;

(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,請你畫出一個相應(yīng)的幾何圖形加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在4×4的正方形網(wǎng)格中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1.在圖①,圖②中已畫出線段AB,在圖③中已畫出點A.按下列要

求畫圖:

1)在圖①中,以格點為頂點,AB為一邊畫一個等腰三角形ABC

2)在圖②中,以格點為頂點,AB為一邊畫一個正方形;

3)在圖③中,以點A為一個頂點,另外三個頂點也在格點上,畫一個面積最大的正方

形,這個正方形的面積=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線L;y=ax2+bx+c(其中a、b、c都不等于0), 它的頂點P的坐標(biāo)是,y軸的交點是M(0,c)我們稱以M為頂點,對稱軸是y軸且過點P的拋物線為拋物線L的伴隨拋物線,直線PML的伴隨直線.

(1)請直接寫出拋物線y=2x2-4x+1的伴隨拋物線和伴隨直線的關(guān)系式:

伴隨拋物線的關(guān)系式_________________

伴隨直線的關(guān)系式___________________

(2)若一條拋物線的伴隨拋物線和伴隨直線分別是y=-x2-3y=-x-3, 則這條拋物線的關(guān)系是___________:

(3)求拋物線L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴隨拋物線和伴隨直線的關(guān)系式;

(4)若拋物線Lx軸交于A(x1,0),B(x2,0)兩點x2>x1>0,它的伴隨拋物線與x 軸交于C,D兩點,AB=CD,請求出a、b、c應(yīng)滿足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.

1)在圖中畫出與關(guān)于直線成軸對稱的△A′B′C′;

2)線段CC′被直線      

3△ABC的面積為      ;

4)在直線上找一點P,使PB+PC的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O按每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周.在旋轉(zhuǎn)的過程中,假如第t秒時,OA、OC、ON三條射線構(gòu)成相等的角,求此時t的值為多少?

(2)將圖1中的三角板繞點O順時針旋轉(zhuǎn)圖2,使ON在AOC的內(nèi)部,請?zhí)骄浚?/span>AOMNOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案