【題目】先化簡(jiǎn),再求值:5x2y﹣[6xy﹣2(xy﹣2x2y)﹣xy2]+4xy,其中x,y滿足|x+ |+(y﹣1)2=0.
【答案】解:原式=5x2y﹣6xy+2xy﹣4x2y+xy2+4xy=x2y+xy2 ,
∵|x+ |+(y﹣1)2=0,
∴x=﹣ ,y=1,
則原式= ﹣ =﹣
【解析】原式去括號(hào)合并得到最簡(jiǎn)結(jié)果,利用非負(fù)數(shù)的性質(zhì)求出x與y的值,代入計(jì)算即可求出值.
【考點(diǎn)精析】關(guān)于本題考查的絕對(duì)值和整式加減法則,需要了解正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;整式的運(yùn)算法則:(1)去括號(hào);(2)合并同類項(xiàng)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:如圖1,把一個(gè)含45°角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)共有800名學(xué)生,準(zhǔn)備調(diào)查他們對(duì)“低碳”知識(shí)的了解程度.
(1)在確定調(diào)查方式時(shí),團(tuán)委設(shè)計(jì)了以下三種方案:
方案一:調(diào)查八年級(jí)部分女生;
方案二:調(diào)查八年級(jí)部分男生;
方案三:到八年級(jí)每個(gè)班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.
請(qǐng)問其中最具有代表性的一個(gè)方案是;
(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計(jì)圖(如圖①、圖②所示),請(qǐng)你根據(jù)圖中信息,將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)你估計(jì)該校八年級(jí)約有多少名學(xué)生比較了解“低碳”知識(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1)(﹣1)2012+(π﹣3.14)0﹣(﹣ )﹣1
(2)化簡(jiǎn)求值:(2x+y)2﹣(2x﹣y)(x+y)﹣2(x﹣2y)(x+2y),其中x= ,y=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,動(dòng)點(diǎn)E從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿A→D→A運(yùn)動(dòng),動(dòng)點(diǎn)G從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿A→B運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之也停止運(yùn)動(dòng).過點(diǎn)G作FG⊥AB交AC于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).以FG為一直角邊向右作等腰直角三角形FGH,△FGH與正方形ABCD重疊部分的面積為S.
(1)當(dāng)t=1.5時(shí),S=________;當(dāng)t=3時(shí),S=________.
(2)設(shè)DE=y1,AG=y2,在如圖所示的網(wǎng)格坐標(biāo)系中,畫出y1與y2關(guān)于t的函數(shù)圖象.并求當(dāng)t為何值時(shí),四邊形DEGF是平行四邊形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com