【題目】某校開(kāi)展以感恩教育為主題的藝術(shù)活動(dòng),舉辦了四個(gè)項(xiàng)目的比賽,它們分別是演講、唱歌、書(shū)法、繪畫(huà)。要求每位同學(xué)必須參加,且限報(bào)一項(xiàng)活動(dòng)。以九年級(jí)(1)班為樣本進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計(jì)圖。請(qǐng)你結(jié)合圖示所給出的信息解答下列問(wèn)題。

(1)求出參加繪畫(huà)比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?

(2)求出扇形統(tǒng)計(jì)圖中參加書(shū)法比賽的學(xué)生所在扇形圓心角的度數(shù)?

(3)若該校九年級(jí)學(xué)生有600人,請(qǐng)你估計(jì)這次藝術(shù)活動(dòng)中,參加演講和唱歌的學(xué)生各有多少人?

【答案】120%272°3240

【解析】試題分析:1)各個(gè)項(xiàng)目的人數(shù)的和就是總?cè)藬?shù),然后利用參加繪畫(huà)比賽的學(xué)生數(shù)除以總?cè)藬?shù)即可求解;

2)利用對(duì)應(yīng)的百分比乘以360度即可求解;

3)利用總?cè)藬?shù)600乘以對(duì)應(yīng)的百分比即可求解.

解:(1)學(xué)生的總數(shù)是:×100%=50(人),

參加書(shū)法比賽的學(xué)生所占的比例是:×100%=20%

則參加繪畫(huà)比賽的學(xué)生所占的比例是:1﹣28%﹣40%﹣20%=12%,

2)參加書(shū)法比賽的學(xué)生所占的比例是20%

則扇形的圓心角的度數(shù)是:360×20%=72°;

3)參加演講比賽的人數(shù)是:600×28%=168(人),

參加唱歌比賽的人數(shù)是:600×40%=240(人).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD,AE分別是ABC的高和中線,AB3cm,AC4cm,BC5cm,∠CAB90°,求:

1AD的長(zhǎng);

2ACEABE的周長(zhǎng)的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊ABC點(diǎn)DABC內(nèi)的一點(diǎn),ADB=120°,ADC=90°,ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°ACE,連接DE

1)求證AD=DE;

2)求DCE的度數(shù)

3)若BD=1,ADCD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上A、B兩點(diǎn)分別對(duì)應(yīng)有理數(shù)ab,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB|ab|,利用數(shù)形結(jié)合思想回答下列問(wèn)題:

1)數(shù)軸上表示210兩點(diǎn)之間的距離是   ,數(shù)軸上表示2和﹣10兩點(diǎn)之間的距離是   ;

2)數(shù)軸上,x和﹣2兩點(diǎn)之間的距離是   

3)若x表示一個(gè)有理數(shù),則|x1|+|x+2|有最小值嗎?若有,請(qǐng)求出最小值,若沒(méi)有,寫(xiě)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米.

(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.

①求拋物線的解析式;

②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?

(2)如圖2,若把橋看做是圓的一部分.

①求圓的半徑;

②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小李做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過(guò)程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):

(1)請(qǐng)估計(jì):當(dāng)實(shí)驗(yàn)次數(shù)為5000次時(shí),摸到白球的頻率將會(huì)接近 ;(精確到0.1)

(2)假如你摸一次,你摸到白球的概率P(摸到白球)= ;

(3)試驗(yàn)估算這個(gè)不透明的盒子里黑球有多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)全等多邊形的定義,我們把四個(gè)角,四條邊分別相等的兩個(gè)凸四邊形叫做全等四邊形,記作:四邊形ABCD≌四邊形A1B1C1D1

1)若四邊形ABCD≌四邊形A1B1C1D1,已知AB3,BC4,ADCD5B90,D 60,則A1D1 ,B1 , A1C1 (直接寫(xiě)出答案);

2)如圖 1,四邊形 ABEF≌四邊形CBED,連接AD BE于點(diǎn)O,連接F,求證:AOBFOE;

3)如圖 2,若ABA1B1BCB1C1,CDC1D1,ADA1D1BB1,求證:四邊形ABCD≌四邊形A1B1C1D1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CBy,y軸負(fù)半軸于B(0,b),(a-3)2+|b+4|=0,S四邊形AOBC=16.

(1)求C點(diǎn)坐標(biāo);

(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)ADAC時(shí),ODA的角平分線與∠CAE的角平分線的反向延長(zhǎng)線交于點(diǎn)P,求∠APD的度數(shù).

(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),DMADBCM點(diǎn),BMD、DAO的平分線交于N點(diǎn),D點(diǎn)在運(yùn)動(dòng)過(guò)程中,N的大小是否變化?若不變,求出其值,若變化,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案