【題目】已知關于的一元二次方程

(Ⅰ)求證:方程有兩個不相等的實數(shù)根;

(Ⅱ)若此方程的一個根是1,請求出方程的另一個根;

()求以()中所得兩根為邊長的等腰三角形的周長.

【答案】(Ⅰ) 見解析;(Ⅱ) 3;(Ⅲ)7.

【解析】

Ⅰ)根據(jù)關于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號來證明結論;

Ⅱ)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關系求得方程的另一根,分兩種情況進行討論解答即可;

()根據(jù)三角形三邊的關系討論即可.

Ⅰ)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,

∴在實數(shù)范圍內,m無論取何值,(m-2)2+4≥4,

≥4,

∴關于x的方程x2-(m+2)x+(2m-1)=0恒有兩個不相等的實數(shù)根;

Ⅱ)根據(jù)題意,得12-1×(m+2)+(2m-1)=0,

解得,m=2,

則方程的另一根為:m+2-1=2+1=3;

()①當該等腰三角形的腰為1、底邊為3時,

1+1<3,

∴構不成三角形;

②當該等腰三角形的腰為3、底邊為1時,等腰三角形的周長=3+3+1=7.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是等邊△ABC內一點,∠AOB=110°,∠BOC=α,將△BOC繞點C按順時針方向旋轉60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系內,已知直線l1經過原點O 及A(2,2 )兩點,將直線l1向右平移4個單位后得到直線l2 , 直線l2與x 軸交于點B.
(1)求直線l2的函數(shù)表達式;
(2)作∠AOB 的平分線交直線l2于點C,連接AC.求證:四邊形OACB是菱形;
(3)設點P 是直線l2上一點,以P 為圓心,PB 為半徑作⊙P,當⊙P 與直線l1相切時,請求出圓心P 點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC,△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.

(1)在圖①中,請你通過觀察、測量、猜想,寫出AB與AP所滿足的數(shù)量關系和位置關系;

(2)將△EFP沿直線l向左平移到圖②的位置時,EP交AC于點Q,連接AP,BQ,猜想并寫出BQ與AP所滿足的數(shù)量關系和位置關系,請證明你的猜想;

(3)將△EFP沿直線l向左平移到圖③的位置時,EP的延長線交AC的延長線于點Q,連接AP,BQ,你認為(2)中所猜想的BQ與AP的數(shù)量關系與位置關系還成立嗎?若成立,給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,AC=3,BC=4,點PAB邊上任一點,過P分別作PEACE,PFBCF,則線段EF的最小值是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售甲、乙兩種品牌的智能手機.這兩種手機的進價和售價如下表所示:

進價(元/部)

4400

2000

售價(元/部)

5000

2500

該商場計劃購進兩種手機若干部,共需14.8萬元,預計全部銷售后可獲毛利潤共2.7萬元.(毛利潤=(售價一進價)×銷售量)

(Ⅰ)該商場計劃購進甲、乙兩種手機各多少部?

(II)通過市場調研,該商場決定在原計劃的基礎上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的3倍,而且用于購進這兩種手機的總資金不超過156萬元,該商場應該怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,角平分線AD、BE、CF相交于點H,過H點作HGAC,垂足為G,那么∠AHE和∠CHG的大小關系為( 。

A. AHE>∠CHG B. AHE<∠CHG C. AHE=CHG D. 不一定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解家長關注孩子成長方面的狀況,學校開展了針對學生家長的“您最關心孩子哪方面成長”的主題調查,調查設置了“健康安全”、“日常學習”、“習慣養(yǎng)成”、“情感品質”四個項目,并隨機抽取甲、乙兩班共100位學生家長進行調查,根據(jù)調查結果,繪制了如圖不完整的條形統(tǒng)計圖.
(1)補全條形統(tǒng)計圖.
(2)若全校共有3600位學生家長,據(jù)此估計,有多少位家長最關心孩子“情感品質”方面的成長?
(3)綜合以上主題調查結果,結合自身現(xiàn)狀,你更希望得到以上四個項目中哪方面的關注和指導?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有客房50間,當每間客房每天的定價為220元時,客房會全部住滿;當每間客房每天的定價增加10元時,就會有一間客房空閑,設每間客房每天的定價增加x元時,客房入住數(shù)為y間.
(1)求y與x的函數(shù)關系式(不要求寫出x的取值范圍);
(2)如果每間客房入住后每天的各種支出為40元,不考慮其他因素,則該賓館每間客房每天的定價為多少時利潤最大?

查看答案和解析>>

同步練習冊答案