【題目】如圖,在矩形ABCD中, ,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:① ∠AED=∠CED;② OE=OD;③ BH=HF;④ BC-CF=2HE;⑤ AB=HF,其中正確的有( 。
A. 2個 B. 3個 C. 4個 D. 5個
【答案】C
【解析】試題分析:∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,
∵AD=AB,
∴AE=AD,
又∠ABE=∠AHD=90°
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠CED,故①正確;
∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),
∴∠OHE=∠AED,
∴OE=OH,
∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠DOH=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正確;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正確;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;
∵AB=AH,∠BAE=45°,
∴△ABH不是等邊三角形,
∴AB≠BH,
∴即AB≠HF,故⑤錯誤;
綜上所述,結(jié)論正確的是①②③④共4個.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一些圖書分給幾名同學(xué),如果每人分3本,那么余8本;如果前面的每名同學(xué)分5本,那么最后一人就分不到3本。這些圖書共有______本.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOC=40°,∠BOC=80°,OD平分∠AOB.
求(1)∠COD的度數(shù);
(2)若OE是∠AOC的角平分線,求∠EOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a為有理數(shù),下列說法中正確的是( )
A.﹣a一定是負數(shù)
B.﹣a2一定是負數(shù)
C.(﹣a)3一定是負數(shù)
D.|a|一定不是負數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,PR=PS,則下列結(jié)論:①點P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com