如圖,已知拋物線與x軸交于A (-4,0)和B(1,0)兩點,與y軸交于C點.
(1)求此拋物線的解析式;
(2)設(shè)E是線段AB上的動點,作EF∥AC交BC于F,連接CE,當(dāng)△CEF的面積是△BEF面積的2倍時,求E點的坐標(biāo).

【答案】分析:(1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值;
(2)根據(jù)拋物線的解析式可得出C點的坐標(biāo),由△CEF和△BEF等高,則面積比等于對應(yīng)底邊比,由此可得出CF=2BF;然后由平行線分線段成比例定理,即可求得BE、AB的比例關(guān)系,由此可求出E點坐標(biāo);
解答:解:(1)∵拋物線與x軸交于A (-4,0)和B(1,0)兩點,
,
解得:
故此拋物線的解析式為:y=x2+x-2;

(2)由(1)知:C(0,-2);
∵S△CEF=2S△BEF,
∴CF=2BF,BC=3BF;
∵EF∥AC,
==,
∵AB=5,
∴BE=,
∴OE=BE-OB=,
∴點E的坐標(biāo)為:(-,0).
點評:此題考查了待定系數(shù)法求二次函數(shù)的解析式、平行線分線段成比例定理以及等高三角形面積的比等于其對應(yīng)底的比等知識.此題難度適中,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)點M是直線CD上的一動點,BM交拋物線于N,是否存在點N是線段BM的中點,如果存在,求出點N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-1,0),與y軸交于點C(0,3),且對稱軸方程為x=1
(1)求拋物線與x軸的另一個交點B的坐標(biāo);
(2)求拋物線的解析式;
(3)設(shè)拋物線的頂點為D,在其對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由;
(4)若點M是拋物線上一點,以B、C、D、M為頂點的四邊形是直角梯形,試求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點A(-1,0),E(3,0),與y軸交于點B,且該精英家教網(wǎng)函數(shù)的最大值是4.
(1)拋物線的頂點坐標(biāo)是(
 
 
);
(2)求該拋物線的解析式和B點的坐標(biāo);
(3)設(shè)拋物線頂點是D,求四邊形AEDB的面積;
(4)若拋物線y=mx2+nx+p與上圖中的拋物線關(guān)于x軸對稱,請直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,已知拋物線與x軸的一個交點A(1,0),對稱軸是x=-1,則該拋物線與x軸的另一交點坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,在坐標(biāo)平面內(nèi)找一點G,使以點G、F、C為頂點的三角形與△COE相似,請直接寫出符合要求的,并在第一象限的點G的坐標(biāo);
(3)將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?

查看答案和解析>>

同步練習(xí)冊答案